The European Physical Journal E

, Volume 33, Issue 3, pp 251–258 | Cite as

Cooperative translocation dynamics of biopolymer chains through nanopores in a membrane: Slow dynamics limit

  • Hai-Jun Wang
  • Fang Gu
  • Xiao-Zhong Hong
  • Xin-Wu Ba
Regular Article
  • 108 Downloads

Abstract.

The cooperative translocation dynamics of two complementary single-stranded DNA chains through two nanopores located in a membrane is investigated theoretically. The translocation process is considered to be quasi-equilibrium, and then under the limit of slow dynamics the average translocation times are numerically presented under different conditions. It is shown that the effects of the chemical potential gradient, the recombination energy and the distance between the two nanopores on the cooperative translocation are significant. The present model predicts that the cooperative translocation of such two chains can shorten the translocation time, reduce the backward motion and thus improve the translocation efficiency.

Keywords

Polymer Chain Hydrodynamic Interaction Slow Dynamic Brownian Dynamic Chemical Potential Gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nelson, Biological Physics: Energy, Information, Life (W. H. Freeman and Company, New York, 2004)Google Scholar
  2. 2.
    A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)CrossRefADSGoogle Scholar
  3. 3.
    M. Rubinstein, R. Colby, Polymer Physics (Oxford University Press, New York, 2003)Google Scholar
  4. 4.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)CrossRefADSGoogle Scholar
  5. 5.
    A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton, Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000)CrossRefADSGoogle Scholar
  6. 6.
    A. Meller, D. Branton, Electrophoresis 23, 2583 (2002)CrossRefGoogle Scholar
  7. 7.
    A.F. Sauer-Budge, J.A. Nyamwanda, D.K. Lubensky, D. Branton, Phys. Rev. Lett. 90, 238101 (2003)CrossRefADSGoogle Scholar
  8. 8.
    P. Chen, J. Gu, E. Brandin, Young-Rok Kim, Q. Wang, D. Branton, Nano Lett. 4, 2293 (2004)CrossRefADSGoogle Scholar
  9. 9.
    J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, Nat. Mater. 2, 611 (2003)CrossRefADSGoogle Scholar
  10. 10.
    A.J. Storm, J.H. Chen, H.W. Zandbergen, C. Dekker, Phys. Rev. E. 71, 051903 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A.J. Storm, C. Storm, J.H. Chen, H.W. Zandbergen, J.F. Joanny, C. Dekker, Nano Lett. 5, 1193 (2005)CrossRefADSGoogle Scholar
  12. 12.
    W. Sung, P.J. Park, Phys. Rev. Lett. 77, 783 (1996)CrossRefADSGoogle Scholar
  13. 13.
    M. Muthukumar, J. Chem. Phys. 111, 10371 (1999)CrossRefADSGoogle Scholar
  14. 14.
    D. Lubensky, D. Nelson, Biophys. J. 77, 1824 (1999)CrossRefADSGoogle Scholar
  15. 15.
    M. Muthukumar, Phys. Rev. Lett. 86, 3188 (2001)CrossRefADSGoogle Scholar
  16. 16.
    M. Muthukumar, J. Chem. Phys. 118, 5174 (2003)CrossRefADSGoogle Scholar
  17. 17.
    C.Y. Kong, M. Muthukumar, J. Chem. Phys. 120, 3460 (2004)CrossRefADSGoogle Scholar
  18. 18.
    E. Slonkina, A.B. Kolomeisky, J. Chem. Phys. 118, 7112 (2003)CrossRefADSGoogle Scholar
  19. 19.
    O. Flomenborn, J. Klafter, Biophys. J. 86, 3576 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Kotsev, A.B. Kolomeisky, J. Chem. Phys. 125, 084906 (2006)CrossRefADSGoogle Scholar
  21. 21.
    S. Matysiak, A. Montesi, M. Pasquali, A.B. Kolomeisky, C. Clementi, Phys. Rev. Lett. 96, 118103 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Y. Kantor, M. Kardar, Phys. Rev. E. 69, 021806 (2004)CrossRefADSGoogle Scholar
  23. 23.
    J. Chuang, Y. Kantor, M. Kardar, Phys. Rev. E. 65, 011802 (2001)CrossRefADSGoogle Scholar
  24. 24.
    J.L.A. Dubbeldam, A. Milchev, V.G. Rostiashvili, T.A. Vilgis, Phys. Rev. E. 76, 010801 (2007)CrossRefADSGoogle Scholar
  25. 25.
    P. Tian, G.D. Smith, J. Chem. Phys. 11, 11475 (2003)CrossRefADSGoogle Scholar
  26. 26.
    K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, J. Chem. Phys. 126, 145101 (2007)CrossRefADSGoogle Scholar
  27. 27.
    I. Huopaniemi, K. Luo, T. Ala-Nissila, S.-C. Ying, Phys. Rev. E. 75, 061912 (2007)CrossRefADSGoogle Scholar
  28. 28.
    I. Huopaniemi, K. Luo, T. Ala-Nissila, S.-C. Ying, J. Chem. Phys. 125, 124901 (2006)CrossRefADSGoogle Scholar
  29. 29.
    K. Luo, I. Huopaniemi, T. Ala-Nissila, S.-C. Ying, J. Chem. Phys. 124, 114707 (2006)CrossRefADSGoogle Scholar
  30. 30.
    K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Phys. Rev. E. 78, 061911 (2008)CrossRefADSGoogle Scholar
  31. 31.
    K. Luo, S.T.T. Ollila, I. Huopaniemi, T. Ala-Nissila, P. Pomorski, M. Karttunen, S.-C. Ying, A. Bhattacharya, Phys. Rev. E. 78, R050901 (2008)CrossRefADSGoogle Scholar
  32. 32.
    D. Wei, W. Yang, X. Jin, Q. Liao, J. Chem. Phys. 126, 204901 (2007)CrossRefADSGoogle Scholar
  33. 33.
    J.K. Wolterink, G.T. Barkema, D. Panja, Phys. Rev. Lett. 96, 208301 (2006)CrossRefADSGoogle Scholar
  34. 34.
    D. Panja, G.T. Barkema, R.C. Ball, J. Phys.: Condens. Matter 19, 432202 (2007)CrossRefADSGoogle Scholar
  35. 35.
    D. Panja, G.T. Barkema, R.C. Ball, J. Phys.: Condens. Matter 20, 075101 (2008)CrossRefADSGoogle Scholar
  36. 36.
    A. Milchev, K. Binder, A. Bhattacherya, J. Chem. Phys. 121, 6042 (2004)CrossRefADSGoogle Scholar
  37. 37.
    A. Cacciuto, E. Luijten, Phys. Rev. Lett. 96, 238104 (2006)CrossRefADSGoogle Scholar
  38. 38.
    Y. Kantor, M. Kardar, Phys. Rev. E. 76, 061121 (2007)CrossRefADSGoogle Scholar
  39. 39.
    K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Phys. Rev. Lett. 100, 058101 (2008)CrossRefADSGoogle Scholar
  40. 40.
    S. Melchionna, M. Fyta, E. Kaxiras, S. Succi, Int. J. Mod. Phys. C. 18, 685 (2007)CrossRefADSGoogle Scholar
  41. 41.
    M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, Nano Lett. 8, 1115 (2008)CrossRefADSGoogle Scholar
  42. 42.
    M. Fyta, S. Melchionna, S. Succi, E. Kaxiras, Phys. Rev. E. 78, 036704 (2008)CrossRefADSGoogle Scholar
  43. 43.
    A. Izmitli, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 128, 085102 (2008)CrossRefADSGoogle Scholar
  44. 44.
    M.G. Gauthier, G.W. Slater, Eur. Phys. J. E. 25, 17 (2008)CrossRefGoogle Scholar
  45. 45.
    M.G. Gauthier, G.W. Slater, J. Chem. Phys. 128, 065103 (2008)CrossRefADSGoogle Scholar
  46. 46.
    M.G. Gauthier, G.W. Slater, J. Chem. Phys. 128, 205103 (2008)CrossRefADSGoogle Scholar
  47. 47.
    U. Gerland, R. Bundschuh, T. Hwa, Phys. Biol. 1, 19 (2004)CrossRefADSGoogle Scholar
  48. 48.
    R. Bundschuh, U. Gerland, Phys. Rev. Lett. 95, 208104 (2005)CrossRefADSGoogle Scholar
  49. 49.
    M. Mccauley, R. Forties, U. Gerland, R. Bundschuh, Phys. Biol. 6, 036006 (2009)CrossRefADSGoogle Scholar
  50. 50.
    R. Zandi, D. Reguera, J. Rudnick, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 22, 8649 (2003)CrossRefADSGoogle Scholar
  51. 51.
    T. Ambjornsson, R. Metzler, Phys. Biol. 1, 77 (2004)CrossRefADSGoogle Scholar
  52. 52.
    D. Poland, H.A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers (Academic, New York, 1970)Google Scholar
  53. 53.
    Y. Kafri, D. Mukamel, L. Peliti, Eur. Phys. J. B. 27, 135 (2002)ADSGoogle Scholar
  54. 54.
    M.E. Craig, D.M. Crothers, P. Doty, J. Mol. Biol. 62, 383 (1971)CrossRefGoogle Scholar
  55. 55.
    H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1989)Google Scholar
  56. 56.
    E. Eisenriegler, K. Kremer, K. Binder, J. Chem. Phys. 77, 6296 (1982)CrossRefADSGoogle Scholar
  57. 57.
    C.A.J. Hoeve, J. Chem. Phys. 43, 3007 (1965)CrossRefADSGoogle Scholar
  58. 58.
    F.T. Hesselink, J. Phys. Chem. 73, 3488 (1969)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hai-Jun Wang
    • 1
    • 2
    • 3
  • Fang Gu
    • 1
  • Xiao-Zhong Hong
    • 4
  • Xin-Wu Ba
    • 1
  1. 1.College of Chemistry and Environment ScienceHebei UniversityBaodingChina
  2. 2.International Centre for Materials PhysicsChinese Academy of SciencesShenyangChina
  3. 3.Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei UniversityBaodingChina
  4. 4.College of Physics Science and TechnologyHebei UniversityBaodingChina

Personalised recommendations