The European Physical Journal E

, Volume 32, Issue 4, pp 377–390 | Cite as

Drag forces on inclusions in classical fields with dissipative dynamics

Regular Article


We study the drag force on uniformly moving inclusions which interact linearly with dynamical free field theories commonly used to study soft condensed matter systems. Drag forces are shown to be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag forces on proteins in membranes due to couplings to various physical parameters of the membrane such as composition, phase and height fluctuations.


Monte Carlo Drag Force Ising Model Casimir Force Inclusion Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, Cambridge, 2005)Google Scholar
  2. 2.
    M. Goulian, R. Bruinsma, P. Pincus, Europhys. Lett. 22, 145 (1993)CrossRefADSGoogle Scholar
  3. 3.
    E. Sackmann, in Structure and Dynamics of Membranes, From Cells to Vesicles, edited by R. Lipowksy, E. Sackmann (Elsevier Science BV, Amsterdam, 1995)Google Scholar
  4. 4.
    H. Imura, K. Okano, Phys. Lett. A 42, 403 (1973)CrossRefADSGoogle Scholar
  5. 5.
    G. Ryskin, M. Kremenetsky, Phys. Rev. Lett. 67, 1574 (1991)CrossRefADSGoogle Scholar
  6. 6.
    E. Dubois-Violette, E. Guazzelli, J. Prost, Philos. Mag. A 48, 727 (1983)CrossRefADSGoogle Scholar
  7. 7.
    T.C. Lubensky, S. Ramaswamy, J. Toner, Phys. Rev. B 33, 7715 (1986)CrossRefADSGoogle Scholar
  8. 8.
    C. Fusco, D.E. Wolf, U. Nowak, Phys. Rev. B 77, 174426 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M.P. Magiera, L. Brendel, D.E. Wolf, U. Nowak, EPL 87, 26002 (2009)CrossRefADSGoogle Scholar
  10. 10.
    V. Démery, D.S. Dean, Phys. Rev. Lett. 104, 080601 (2010)CrossRefGoogle Scholar
  11. 11.
    P.G. Saffmann, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)CrossRefADSGoogle Scholar
  12. 12.
    D.S. Dean, A. Gopinathan, J. Stat. Mech. L08001 (2009)Google Scholar
  13. 13.
    W. Helfrich, Z. Naturforsch. 28c, 693 (1973)Google Scholar
  14. 14.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  15. 15.
    Solving the problem in Fourier space ensures that derivatives so computed are averaged over their left and right values (Dirichlet’s theorem), this thus corresponds to our method of computing the force via the difference in energy of a move forwards and a move backwardsGoogle Scholar
  16. 16.
    L.P. Gor’kov, N.B. Kopnin, Sov. Phys. Usp. 18, 496 (1975)CrossRefADSGoogle Scholar
  17. 17.
    A.T. Dorsey, Phys. Rev. B 46, 8376 (1992)CrossRefADSGoogle Scholar
  18. 18.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 83, 3285 (1999)CrossRefADSGoogle Scholar
  19. 19.
    L.D. Landau, Phys. Z. Sowjetunion 3, 644 (1933)Google Scholar
  20. 20.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)CrossRefADSGoogle Scholar
  21. 21.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963)MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    E. Lippiello, F. Corberi, M. Zannetti, Phys. Rev. E 71, 036104 (2005)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    A. Naji, F.L.H. Brown, J. Chem. Phys. 126, 235103 (2007)CrossRefADSGoogle Scholar
  24. 24.
    E. Evans, E. Sackmann, J. Fluid Mech. 194, 553 (1988)MATHCrossRefADSGoogle Scholar
  25. 25.
    R. Merkel, E. Sackmann, E. Evans, J. Phys. (Paris) 50, 1535 (1989)Google Scholar
  26. 26.
    Y. Gambin et al., Proc. Natl. Acad. Sci. U.S.A. 103, 2089 (2006)CrossRefADSGoogle Scholar
  27. 27.
    A. Naji, P.J. Atzberger, F.L.H. Brown, Phys. Rev. Lett. 102, 138102 (2009)CrossRefADSGoogle Scholar
  28. 28.
    A. Naji, A.J. Levine, P.A. Pincus, Biophys. J. 93, L49 (2007)CrossRefGoogle Scholar
  29. 29.
    M.E. Fisher, P.-G. de Gennes, C. R. Acad. Sci. Paris, Ser. B 287, 207 (1978)Google Scholar
  30. 30.
    C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, Nature 451, 172 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, IRSAMCUniversité de Toulouse UPS and CNRSToulouse Cedex 4France

Personalised recommendations