The European Physical Journal E

, Volume 32, Issue 1, pp 13–23 | Cite as

Sound propagation in a monodisperse bubble cloud: From the crystal to the glass

  • M. Devaud
  • T. Hocquet
  • V. Leroy
Regular Article


We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array --a bubble crystal-- for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array --a bubble glass-- and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.


Dispersion Relation Brillouin Zone Sound Propagation Acoustic Radiation Coulomb Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Minnaert, Philos. Mag. 16, 235 (1933)Google Scholar
  2. 2.
    T.G. Leighton, The Acoustic Bubble (Academic Press, London, 1997)Google Scholar
  3. 3.
    A.B. Wood, A Textbook of Sound (Bell, London, 1932)Google Scholar
  4. 4.
    F.S. Crawford, Am. J. Phys. 50, 398 (1982)CrossRefADSGoogle Scholar
  5. 5.
    L.L. Foldy, Phys. Rev. 67, 107 (1945)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E.L. Carstensen, L.L. Foldy, J. Acoust. Soc. Am. 19, 481 (1947)CrossRefADSGoogle Scholar
  7. 7.
    E. Silberman, J. Acoust. Soc. Am. 29, 8 (1957)CrossRefGoogle Scholar
  8. 8.
    K. Commander, A. Prosperetti, J. Acoust. Soc. Am. 85, 732 (1989)CrossRefADSGoogle Scholar
  9. 9.
    S.A. Cheyne, C.T. Stebbings, R.A. Roy, J. Acoust. Soc. Am. 97, 1621 (1995)CrossRefADSGoogle Scholar
  10. 10.
    P. Wilson, Sound Propagation and Scattering in Bubbly Liquids, Ph.D. thesis (College of Engineering, Boston University, 2002)Google Scholar
  11. 11.
    P.S. Wilson, R.A. Roy, W.M. Carey, J. Acoust. Soc. Am. 113, 3245 (2003)CrossRefADSGoogle Scholar
  12. 12.
    V. Leroy, A. Strybulevych, M.G. Scanlon, J.H. Page, J. Acoust. Soc. Am. 123, 1931 (2008)CrossRefADSGoogle Scholar
  13. 13.
    M. Lax, Rev. Mod. Phys. 23, 287 (1951)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    P. Waterman, R. Truell, J. Math. Phys. 2, 512 (1961)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    R. Caflisch, M. Miksis, G. Papanicolaou, L. Ting, J. Fluid Mech. 153, 259 (1985)MATHCrossRefADSGoogle Scholar
  16. 16.
    C. Feuillade, J. Acoust. Soc. Am. 98, 1178 (1995)CrossRefADSGoogle Scholar
  17. 17.
    C. Feuillade, J. Acoust. Soc. Am. 99, 3412 (1996)CrossRefADSGoogle Scholar
  18. 18.
    Z. Ye, J. Acoust. Soc. Am. 102, 1239 (1997)CrossRefADSGoogle Scholar
  19. 19.
    C. Feuillade, J. Acoust. Soc. Am. 102, 1242 (1997)CrossRefADSGoogle Scholar
  20. 20.
    F.S. Henyey, J. Acoust. Soc. Am. 105, 2149 (1999)CrossRefADSGoogle Scholar
  21. 21.
    C. Feuillade, J. Acoust. Soc. Am. 111, 1552 (2002)CrossRefADSGoogle Scholar
  22. 22.
    F.S. Henyey, J. Acoust. Soc. Am. 111, 1556 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Z. Ye, L. Ding, J. Acoust. Soc. Am. 98, 1629 (1995)CrossRefADSGoogle Scholar
  24. 24.
    S.G. Kargl, J. Acoust. Soc. Am. 111, 168 (2002)CrossRefADSGoogle Scholar
  25. 25.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders International Editions, Philadelphia, 1976)Google Scholar
  26. 26.
    G. Labeyrie, D. Delande, C.A. Müller, C. Miniatura, R. Kaiser, Opt. Commun. 243, 157 (2004)CrossRefADSGoogle Scholar
  27. 27.
    B.A. van Tiggelen, A. Lagendijk, Phys. Rev. B 50, 16729 (1994)CrossRefADSGoogle Scholar
  28. 28.
    A.A. Ruffa, J. Acoust. Soc. Am. 91, 1 (1992)CrossRefADSGoogle Scholar
  29. 29.
    Z. Ye, A. Alvarez, Phys. Rev. Lett. 80, 3503 (1998)CrossRefADSGoogle Scholar
  30. 30.
    Z. Ye, H. Hsu, E. Hoskinson, Phys. Lett. A 275, 452 (2000)CrossRefADSGoogle Scholar
  31. 31.
    Z. Ye, H. Hsu, Appl. Phys. Lett. 79, 1724 (2001)CrossRefADSGoogle Scholar
  32. 32.
    M.S. Kushwaha, B. Djafari-Rouhani, L. Dobrzynski, Phys. Lett. A 248, 252 (1998)CrossRefADSGoogle Scholar
  33. 33.
    M. Kafesaki, R.S. Penciu, E.N. Economou, Phys. Rev. Lett. 84, 6050 (2000)CrossRefADSGoogle Scholar
  34. 34.
    R. Sprik, B.A. van Tiggelen, A. Lagendijk, Europhys. Lett. 35, 265 (1996)CrossRefADSGoogle Scholar
  35. 35.
    M. Devaud, T. Hocquet, J.-C. Bacri, V. Leroy, Eur. J. Phys. 29, 1263 (2008)MATHCrossRefGoogle Scholar
  36. 36.
    A. Prosperetti, J. Acoust. Soc. Am. 61, 17 (1977)CrossRefADSGoogle Scholar
  37. 37.
    V. Leroy, Bulles d'air dans l'eau: couplages d'oscillateurs harmoniques et excitation paramètrique, Ph.D. thesis (Université Paris 7, Paris, 2004)Google Scholar
  38. 38.
    M. Devaud, T. Hocquet, V. Leroy, J.-C. Bacri, (2007)
  39. 39.
    T. Still, W. Cheng, M. Retsch, R. Sainidou, J. Wang, U. Jonas, N. Stefanou, G. Fytas, Phys. Rev. Lett. 100, 194301 (2008)CrossRefADSGoogle Scholar
  40. 40.
    V. Leroy, A. Strybulevych, M.G. Scanlon, J.H. Page, Eur. Phys. J. E 29, 123 (2009)CrossRefGoogle Scholar
  41. 41.
    M.A. Biot, J. Acoust. Soc. Am. 28, 168 (1956)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes Complexes (MSC)UMR 7057 (CNRS) et Université Paris DiderotPARIS CEDEX 13France
  2. 2.Université Pierre et Marie CuriePARIS CEDEX 05France

Personalised recommendations