The first-passage problem for diffusion through a cylindrical pore with sticky walls

  • N. A. Licata
  • S. W. Grill
Regular Article


We calculate the first-passage time distribution for diffusion through a cylindrical pore with sticky walls. A particle diffusively explores the interior of the pore through a series of binding and unbinding events with the cylinder wall. Through a diagrammatic expansion we obtain first-passage time statistics for the particle’s exit from the pore. Connections between the model and nucleocytoplasmic transport in cells are discussed.


Nuclear Pore Complex Cylinder Wall Absorb Boundary Condition Cylindrical Pore Delta Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Görlich, U. Kutay, Annu. Rev. Cell Dev. Biol. 15, 607 (1999).CrossRefGoogle Scholar
  2. 2.
    U. Kubitscheck, D. Grnwald, A. Hoekstra, D. Rohleder, T. Kues, J.P. Siebrasse, R. Peters, J. Cell Biol. 168, 233 (2005).CrossRefGoogle Scholar
  3. 3.
    W. Yang, S.M. Musser, J. Cell Biol. 174, 951 (2006).CrossRefGoogle Scholar
  4. 4.
    K. Ribbeck, D. Görlich, EMBO J. 20, 1320 (2001).CrossRefGoogle Scholar
  5. 5.
    W. Yang, J. Gelles, S.M. Musser, Proc. Natl. Acad. Sci. U.S.A. 101, 12887 (2004).CrossRefADSGoogle Scholar
  6. 6.
    L.A. Strawn, T. Shen, N. Shulga, D.S. Goldfarb, S.R. Wente, Nat. Cell Biol. 6, 197 (2004).CrossRefGoogle Scholar
  7. 7.
    R.Y.H. Lim, B. Fahrenkrog, J. Köser, K. Schwarz-Herion, J. Deng, U. Aebi, Science 318, 640 (2007).CrossRefADSGoogle Scholar
  8. 8.
    S.S. Patel, B.J. Belmont, J.M. Sante, M.F. Rexach, Cell 129, 83 (2007).CrossRefGoogle Scholar
  9. 9.
    S. Otsuka, S. Iwasaka, Y. Yoneda, K. Takeyasu, S.H. Yoshimura, Proc. Natl. Acad. Sci. U.S.A. 105, 16101 (2008).CrossRefADSGoogle Scholar
  10. 10.
    B. Nielsen, C. Jeppesen, J.H. Ipsen, J. Biol. Phys. 32, 465 (2006).CrossRefGoogle Scholar
  11. 11.
    A. Zilman, S.D. Talia, B.T. Chait, M.P. Rout, M.O. Magnasco, PLoS Comput. Biol. 3, 1281 (2007).CrossRefGoogle Scholar
  12. 12.
    O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Phys. Chem. Chem. Phys. 10, 7059 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Redner, A Guide to First-Passage Processes, 1st edition (Cambridge University Press, Cambridge, 2007).MATHGoogle Scholar
  14. 14.
    J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).MATHGoogle Scholar
  15. 15.
    G.N. Watson, Treatise on the Theory of Bessel Functions, 2nd edition (Cambridge University Press, Cambridge, 1995).MATHGoogle Scholar
  16. 16.
    N.A. Licata, A.V. Tkachenko, Phys. Rev. E 76, 041405 (2007).CrossRefADSGoogle Scholar
  17. 17.
    K. Kehr, K. Murthy, H. Ambaye, Physica A 253, 9 (1998).CrossRefGoogle Scholar
  18. 18.
    Z. Schuss, A. Spivak, SIAM 62, 1698 (2002).MATHMathSciNetGoogle Scholar
  19. 19.
    Z. Schuss, A. Spivak, Chem. Phys. 235, 227 (1998).CrossRefADSGoogle Scholar
  20. 20.
    A. Spivak, Z. Schuss, Appl. Math. E-Notes 2, 132 (2002).MATHMathSciNetGoogle Scholar
  21. 21.
    A. Spivak, Z. Schuss, Appl. Math. E-Notes 3, 147 (2003).MATHMathSciNetGoogle Scholar
  22. 22.
    D.I. Dimitrov, A. Milchev, K. Binder, J. Chem. Phys. 125, 034905 (2006).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations