Advertisement

Flow-correlated dilution of a regular network leads to a percolating network during tumor-induced angiogenesis

Regular Article

Abstract

We study a simplified stochastic model for the vascularization of a growing tumor, incorporating the formation of new blood vessels at the tumor periphery as well as their regression in the tumor center. The resulting morphology of the tumor vasculature differs drastically from the original one. We demonstrate that the probabilistic vessel collapse has to be correlated with the blood shear force in order to yield percolating network structures. The resulting tumor vasculature displays fractal properties. Fractal dimension, Micro-Vascular Density (MVD), blood flow and shear force have been computed for a wide range of parameters.

PACS

87.18.-h Biological complexity 64.60.ah Percolation 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) 

References

  1. 1.
    P. Carmeliet, R.K. Jain, Nature (London) 407, 249 (2000).CrossRefGoogle Scholar
  2. 2.
    B. Capogrosso Sansone, M. Scalerandi, C.A. Condat, Phys. Rev. Lett. 87, 128102 (2001).CrossRefADSGoogle Scholar
  3. 3.
    D. Hanahan, J. Folkman, Cell 86, 353 (1996).CrossRefGoogle Scholar
  4. 4.
    P.C. Maisonpierre et al., 277, 55 (1997).Google Scholar
  5. 5.
    J. Holash et al., Science 284, 1994 (1999).CrossRefGoogle Scholar
  6. 6.
    B. Döme, S. Paku, B. Somlai, J. Tímár, J. Pathol. 197, 355 (2002).CrossRefGoogle Scholar
  7. 7.
    R. Gödde, H. Kurz, Dev. Dyn. 220, 387 (2001).CrossRefGoogle Scholar
  8. 8.
    A.R.A. Anderson, M.A.J. Chaplain, Bull. Math. Biol. 60, 857 (1998).MATHCrossRefGoogle Scholar
  9. 9.
    H.A. Levine, B.D. Sleeman, M. Nilsen-Hamiltion, J. Math. Biol. 42, 195 (2001).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Alarcon, H.M. Byrne, P.K. Maini, J. Theor. Biol. 225, 257 (2003).CrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Bartha, H. Rieger, J. Theor. Biol. 241, 903 (2006).MathSciNetGoogle Scholar
  12. 12.
    D.-S. Lee, H. Rieger, K. Bartha, Phys. Rev. Lett. 96, 058104 (2006).CrossRefADSGoogle Scholar
  13. 13.
    M. Welter, K. Bartha, H. Rieger, J. Theor. Biol. 250, 257 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Welter, K. Bartha, H. Rieger, J. Theor. Biol. 259, 405 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Gazit, D.A. Berk, M. Leunig, L.T. Baxter, R.K. Jain, Phys. Rev. Lett. 75, 2428 (1995).CrossRefADSGoogle Scholar
  16. 16.
    J.W. Baish, R.K. Jain, Nature Med. 4, 984 (1998).Google Scholar
  17. 17.
    J.W. Baish, R.K. Jain, Cancer Res. 60, 3683 (2000).Google Scholar
  18. 18.
    J.W. Baish, R.K. Jain, Cancer Res. 61, 8347 (2001).Google Scholar
  19. 19.
    P. Hainaud, J.-O. Contrerès, A. Villemain, L.-X. Liu, J. Plouët, G. Tobelem, E. Dupuy, Cancer Res. 66, 8501 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Erber, U. Eichelsbacher, V. Powajbo, T. Korn, V. Djonov, J. Lin, H.-P. Hammes, R. Grobholz, A. Ullrich, P. Vajkoczy, EMBO 25, 628 (2006).CrossRefGoogle Scholar
  21. 21.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Company, 1983).Google Scholar
  22. 22.
    A.R. Pries, T.W. Secomb, P. Gaehtgens, Circ. Res. 77, 1017 (1995).Google Scholar
  23. 23.
    D. Stauffer, A. Aharony, An Introduction to Percolation Theory (Taylor and Francis, London, 1994) revised 2nd edition.Google Scholar
  24. 24.
    L. Furuberg, J. Feder, A. Aharony, T. Jossang, Phys. Rev. Lett. 61, 2117 (1998).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    A.P. Sheppard, M.A. Knackstedt, W.V. Pinczewski, M. Sahimi, J. Phys. A 32, L521 (1999).MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisUSA

Personalised recommendations