The European Physical Journal E

, Volume 29, Issue 3, pp 305–310 | Cite as

Evidence of a two-state picture for supercooled water and its connections with glassy dynamics

  • G. A. Appignanesi
  • J. A. Rodriguez Fris
  • F. Sciortino
Regular Article

Abstract

The picture of liquid water as consisting of a mixture of molecules of two different structural states (structured, low-density molecules and unstructured, high-density ones) represents a belief that has been around for long time awaiting for a conclusive validation. While in the last years some indicators have indeed provided certain evidence for the existence of structurally different “species”, a more definite bimodality in the distribution function of a sound structural quantity would be desired. In this context, our present work combines the use of a structural parameter with a minimization technique to yield neat bimodal distributions in a temperature range within the supercooled liquid regime, thus clearly revealing the presence of two populations of differently structured water molecules. Furthermore, we elucidate the role of the inter-conversion between the identified two kinds of states for the dynamics of structural relaxation, thus linking structural information to dynamics, a long-standing issue in glassy physics.

PACS

61.20.Ja Computer simulation of liquid structure 61.20.Lc Time-dependent properties; relaxation 61.25.Em Molecular liquids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Debenedetti, Metastable Liquids (Priceton University Press, Priceton, NJ, 1996).Google Scholar
  2. 2.
    O. Mishima, H.E. Stanley, Nature 396, 329 (1998).Google Scholar
  3. 3.
    C.A. Angell, Chem. Rev. 102, 2627 (2002).Google Scholar
  4. 4.
    C.A. Angell, Annu. Rev. Phys. Chem. 55, 559 (2004).Google Scholar
  5. 5.
    E. Shiratani, M. Sasai, J. Chem. Phys. 104, 7671 (1996).Google Scholar
  6. 6.
    E. Shiratani, M. Sasai, J. Chem. Phys. 108, 3264 (1998).Google Scholar
  7. 7.
    O. Mishima, L.D. Calvert, E. Whalley, Nature 310, 393 (1984).Google Scholar
  8. 8.
    H.-G. Heide, Ultramicroscopy 14, 271 (1984).Google Scholar
  9. 9.
    T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker, Phys. Chem. Chem. Phys. (Inc. Faraday Trans.) 3, 5355 (2001).Google Scholar
  10. 10.
    T. Loerting, N. Giovambattista, J. Phys.: Condens. Matter 18, 919 (2006).Google Scholar
  11. 11.
    M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 104, 7210 (1996).Google Scholar
  12. 12.
    E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000).Google Scholar
  13. 13.
    S. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).Google Scholar
  14. 14.
    G.A. Appignanesi, J.A. Rodriguez Fris, R.A. Montani, W. Kob, Phys. Rev. Lett. 96, 057801 (2006).Google Scholar
  15. 15.
    B. Doliwa, A. Heuer, Phys. Rev. Lett. 91, 235501 (2003).Google Scholar
  16. 16.
    A. Widmer-Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).Google Scholar
  17. 17.
    G.S. Matharoo, M.S.G. Razul, P.H. Poole, Phys. Rev. E 74, 050502 (2006).Google Scholar
  18. 18.
    L.O. Hedges, J.P. Garrahan, J. Phys.: Condens. Matter 19, 205124 (2007).Google Scholar
  19. 19.
    J.A. Rodriguez Fris, G.A. Appignanesi, E. La Nave, F. Sciortino, Phys. Rev. E 75, 041501 (2007).Google Scholar
  20. 20.
    H.J.C. Berendsen, J.R. Grigera, T.P. Stroatsma, J. Phys. Chem. 91, 6269 (1987).Google Scholar
  21. 21.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).Google Scholar
  22. 22.
    P.-L. Chau, A.J. Hardwick, Mol. Phys. 93, 511 (1998).Google Scholar
  23. 23.
    J.R. Errington, P.G. Debenedetti, Nature 409, 318 (2001).Google Scholar
  24. 24.
    Yu.I. Naberukhin, V.P. Voloshin, N.N. Medvedev, Mol. Phys. 73, 917 (1991).Google Scholar
  25. 25.
    A. Oleinikova, I. Brovchenko, J. Phys.: Condens. Matter 18, S2247 (2006).Google Scholar
  26. 26.
    F. Sciortino, A. Geiger, H.E. Stanley, J. Chem. Phys. 96, 3857 (1992).Google Scholar
  27. 27.
    R.A.L. Vallée, M. van der Auweraer, W. Paul, K. Binder, Phys. Rev. Lett. 97, 217801 (2006).Google Scholar
  28. 28.
    I. Ohmine, J. Phys. Chem. 99, 6767 (1995).Google Scholar
  29. 29.
    C.H. Cho, S. Singh, G.W. Robinson, Phys. Rev. Lett. 76, 1651 (1996)Google Scholar
  30. 30.
    E.G. Ponyatovsky, V.V. Sinitsyn, T.A. Pozdnyakova, JETP Lett. 60, 360 (1994)Google Scholar
  31. 31.
    H. Tanaka, Phys. Rev. Lett. 80, 5750 (1998)Google Scholar
  32. 32.
    H. Tanaka, J. Phys.: Condens. Matter 15, L703 (2003).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. A. Appignanesi
    • 1
  • J. A. Rodriguez Fris
    • 1
  • F. Sciortino
    • 2
  1. 1.Área de Fisicoquímica, Departamento de Química and INQUISURUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Dipartimento di Fisica and INFM-CNR-SOFTUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations