Advertisement

Aggregation of a hydrophobically modified poly(propylene imine) dendrimer

  • Susheng Tan
  • Aihua Su
  • Warren T. Ford
Regular Article

Abstract.

The poly(propylene imine) dendrimer DAB-dendr- (NH2)8 was hydrophobically modified with dodecanoyl end groups. The modified dendrimer was deposited onto mica by adsorption from solution and observed by atomic force microscopy. With the decrease of adsorption time, the modified dendrimer varied from continuous film to scattered islands. For the adsorption time of 20s the dendrimer formed a sub-monolayer thin film that contained many fractal aggregates of fractal dimension 1.80 that were > 1 μm in diameter and no more than 0.8nm thick. After 5 months at 1#1 , the initial fractal aggregates transformed into disks and other less-branched shapes with average heights of the domains of 0.6nm and 0.4nm, respectively. Formation of the fractal aggregates is explained by diffusion-limited aggregation. The slow reorganization of dendrimer molecules in the fractal aggregates occurs at a temperature well above the Tg of the dendrimer.

PACS.

68.47.Pe Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on surfaces 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) 68.37.Ps Atomic force microscopy (AFM) 

References

  1. 1.
    G.R. Newkome, C.N. Moorefield, F. Vögtle, Dendrimers and Dendrons: Concepts, Synthesis, Applications (Wiley-VCH Verlag, Weinheim, 2001).Google Scholar
  2. 2.
    D.A. Tomalia, Mater. Today 8, 34 (2005).Google Scholar
  3. 3.
    J. Wang, Y. Cheng, T. Xu, Recent Patents Chem. Eng. 1, 41 (2008).Google Scholar
  4. 4.
    K.T. Al-Jamal, C. Ramaswamy, A.T. Florence, Adv. Drug Delivery Rev. 57, 2238 (2005).Google Scholar
  5. 5.
    M. Marcos, A. Martín-Rapún, A. Omenat, J.L. Serrano, Chem. Soc. Rev. 36, 1889 (2007).Google Scholar
  6. 6.
    S.S. Sheiko, A.M. Muzafarov, R.G. Winkler, E.V. Getmanova, G. Eckert, P. Reineker, Langmuir 13, 4172 (1997).Google Scholar
  7. 7.
    D.C. Tully, J.M.J. Frechet, Chem. Commun. 1229 (2001).Google Scholar
  8. 8.
    S.C. Zimmerman, L.J. Lawless, Top. Curr. Chem. 217, 95 (2001).Google Scholar
  9. 9.
    A. Su, S. Tan, P. Thapa, B.N. Flanders, W.T. Ford, J. Phys. Chem. C 111, 4695 (2007).Google Scholar
  10. 10.
    J.-W. Weener, E.W. Meijer, Adv. Mater. 12, 741 (2000).Google Scholar
  11. 11.
    A. Schenning, C. Elissen-Roman, J.W. Weener, M. Baars, S.J. van der Gaast, E.W. Meijer, J. Am. Chem. Soc. 120, 8199 (1998).Google Scholar
  12. 12.
    P.M. Saville, P.A. Reynolds, J.W. White, C.J. Hawker, J.M.J. Frechet, K.L. Wooley, J. Penfold, J.R.P. Webster, J. Phys. Chem. 99, 8283 (1995).Google Scholar
  13. 13.
    P.M. Saville, J.W. White, C.J. Hawker, K.L. Wooley, J.M.J. Frechet, J. Phys. Chem. 97, 293 (1993).Google Scholar
  14. 14.
    Y. SayedSweet, D.M. Hedstrand, R. Spindler, D.A. Tomalia, J. Mater. Chem. 7, 1199 (1997).Google Scholar
  15. 15.
    J.P. Kampf, C.W. Frank, E.E. Malmstrom, C.J. Hawker, Langmuir 15, 227 (1999).Google Scholar
  16. 16.
    M. Ujihara, J. Orbulescu, T. Imae, R.M. Leblanc, Langmuir 21, 6846 (2005).Google Scholar
  17. 17.
    X. Zhai, S. Peleshanko, N.S. Klimenko, K.L. Genson, D. Vaknin, M.Y. Vortman, V.V. Shevchenko, V.V. Tsukruk, Macromolecules 36, 3101 (2003).Google Scholar
  18. 18.
    K.L. Genson, J. Holzmuller, O.F. Villacencio, D.V. McGrath, D. Vaknin, V.V. Tsukruk, J. Phys. Chem. B 109, 20393 (2005).Google Scholar
  19. 19.
    K.L. Genson, D. Vaknin, O. Villacencio, D.V. McGrath, V.V. Tsukruk, J. Phys. Chem. B 106, 11277 (2002).Google Scholar
  20. 20.
    R. Gunawidjaja, S. Peleshanko, K.L. Genson, C. Tsitsilianis, V.V. Tsukruk, Langmuir 22, 6168 (2006).Google Scholar
  21. 21.
    R.N. Mason, M. Smith, T. Andrews, D. Teeters, Solid State Ionics 118, 129 (1999).Google Scholar
  22. 22.
    F.I. Li, S.M. Thaler, P.H. Leo, J.A. Barnard, J. Phys. Chem. B 110, 25838 (2006).Google Scholar
  23. 23.
    ChemOffice by CambridgeSoft Corporation (http://www. cambridgesoft.com/software/ChemOffice/) was used to minimize the molecular energy.Google Scholar
  24. 24.
    D.N. Theodorou, U.W. Suter, Macromolecules 18, 1206 (1985).Google Scholar
  25. 25.
    N. Zacharopoulos, L.G. Economou, Macromolecules 35, 1814 (2002).Google Scholar
  26. 26.
    W.T. Elam, S.A. Wolf, J. Sprague, D.U. Gubser, D. Vanvechten, G.L. Barz, P. Meakin, Phys. Rev. Lett. 54, 701 (1985).Google Scholar
  27. 27.
    D.T. Smith, J.J.M. Valles, R.B. Hallock, Phys. Rev. Lett. 54, 2646 (1985).Google Scholar
  28. 28.
    M. Fujii, K. Arii, K. Yoshino, J. Phys.: Condens. Matter 3, 7207 (1991).Google Scholar
  29. 29.
    Q. Wu, L. Wu, Z. Qi, F. Wang, Synth. Met. 105, 13 (1999).Google Scholar
  30. 30.
    D.K. Schwartz, S. Steinberg, J. Israelachvili, J.A.N. Zasadzinski, Phys. Rev. Lett. 69, 3354 (1992).Google Scholar
  31. 31.
    A. Lomander, W. Hwang, S. Zhang, Nano Lett. 5, 1255 (2005).Google Scholar
  32. 32.
    R. Sneer, M.J. Weygand, K. Kjaer, D.A. Tirrell, H. Rapapport, ChemPhysChem 5, 747 (2004).Google Scholar
  33. 33.
    S. Tan, D. Zhang, E. Zhou, Polymer 38, 4571 (1997).Google Scholar
  34. 34.
    R.P. Wool, J.M. Long, Macromolecules 26, 5227 (1993).Google Scholar
  35. 35.
    D. Farin, D. Avnir, Angew. Chem. Int. Ed. 30, 1379 (1991).Google Scholar
  36. 36.
    D.A. Tomalia, A.M. Naylor, W.A. Goddard III, Angew. Chem. Int. Ed. 29, 138 (1990).Google Scholar
  37. 37.
    Y. Pan, W.T. Ford, Macromolecules 33, 3731 (2000).Google Scholar
  38. 38.
    T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Nature Mater. 5, 265 (2006).Google Scholar
  39. 39.
    A. Flores, E. Corvera-Poire, C. Garza, R. Castillo, J. Phys. Chem. B 110, 4824 (2006).Google Scholar
  40. 40.
    T.J. Prosa, B.J. Bauer, E.J. Amis, D.A. Tomalia, R. Scherrenberg, J. Polym. Sci. Polym. Phys. 35, 2913 (1997).Google Scholar
  41. 41.
    R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J. Brackman, E. de Brabander, K. Mortensen, Macromolecules 31, 456 (1998).Google Scholar
  42. 42.
    A. Ramzi, B.J. Bauer, R. Scherrenberg, P. Froehling, J. Joosten, E.J. Amis, Macromolecules 32, 4983 (1999).Google Scholar
  43. 43.
    P. Brocorens, R. Lazzaroni, J.L. Bredas, J. Phys. Chem. B 109, 19897 (2005).Google Scholar
  44. 44.
    M.L. Mansfield, L.I. Klushin, Macromolecules 26, 4262 (1993).Google Scholar
  45. 45.
    A.P.H.J. Schenning, C. Elissen-Roman, J.-W. Weener, M.W.P.L. Baars, S.J. van der Gaast, E.W. Meijer, J. Am. Chem. Soc. 120, 8199 (1998).Google Scholar
  46. 46.
    H. Tokuhisa, M.Q. Zhao, L.A. Baker, V.T. Phan, D.L. Dermody, M.E. Garcia, R.F. Peez, R.M. Crooks, T.M. Mayer, J. Am. Chem. Soc. 120, 4492 (1998).Google Scholar
  47. 47.
    K.L. Genson, J. Holzmueller, I. Leshchiner, E. Agina, N. Boiko, V.P. Shibaev, V.V. Tsukruk, Macromolecules 38, 8028 (2005).Google Scholar
  48. 48.
    V.V. Tsukruk, Adv. Mater. 10, 253 (1998).Google Scholar
  49. 49.
    K. Tanaka, S. Dai, T. Kajiyama, K. Aoi, M. Okada, Langmuir 19, 1196 (2003).Google Scholar
  50. 50.
    A. Mecke, I. Lee, J.R. Baker Jr., M.M.B. Holl, B.G. Orr, Eur. Phys. J. E 14, 7 (2004).Google Scholar
  51. 51.
    G. Giupponi, D.M.A. Buzza, J. Chem. Phys. 122, 194903 (2005).Google Scholar
  52. 52.
    F.T. Xu, S.C. Street, J.A. Barnard, Langmuir 19, 3066 (2003).Google Scholar
  53. 53.
    M.L. Mansfield, Polymer 37, 3835 (1996).Google Scholar
  54. 54.
    A. Karperien (http://rsb.info.nih.gov/ij/plugins/ fractal-generator.html). Accessed August 15, 2005.Google Scholar
  55. 55.
    T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
  56. 56.
    T.A. Witten, L.M. Sander, Phys. Rev. B 27, 5686 (1983).Google Scholar
  57. 57.
    National Institutes of Health. (http://rsb.info.nih. gov/ij). Accessed August 15, 2005.Google Scholar
  58. 58.
    A. Karperien (http://rsb.info.nih.gov/ij/plugins/ frac-lac.html). Accessed August 15, 2005.Google Scholar
  59. 59.
    A. Blumen, H. Schnorer, Angew. Chem. Int. Ed. 29, 113 (1990).Google Scholar
  60. 60.
    R. Pericet-Camara, G. Papastavrou, M. Borkovec, Langmuir 20, 3264 (2004).Google Scholar
  61. 61.
    E.M.M. de Brabander-van den Berg, E.W. Meijer, Angew. Chem. Int. Ed. 32, 1308 (1993).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Susheng Tan
    • 1
  • Aihua Su
    • 2
  • Warren T. Ford
    • 2
  1. 1.Microscopy LaboratoryOklahoma State UniversityStillwaterUSA
  2. 2.Department of ChemistryOklahoma State UniversityStillwaterUSA

Personalised recommendations