Skip to main content
Log in

Failure and success of hydrodynamic interaction models

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In suspensions with charged particles, electrostatic forces and hydrodynamic interactions are both important to describe the system. We study different models of hydrodynamic interaction for monopolarly charged particles in a non-polar liquid. In this case, there is no screening of the Coulomb repulsion, so the repulsion between all pairs must be taken into account. The particles are expected to drift away from each other, however at a lower rate when hydrodynamic interaction between the particles is taken into account. Existing, frequently used models of hydrodynamic interactions tend to overestimate the slowing down of the charged particles, even to the extent that the particles effectively attract each other. This is demonstrated for some selected particle setups. We find that these anomalies even occur in dilute systems, if they contain sufficiently many particles. We explain why these anomalies can be avoided by an approach, in which the superposition of interactions is done in the friction tensor instead of the mobility tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. McNamara, E.G. Flekkøy, K.J. Måløy, Phys. Rev. E 61, 4054 (2000).

    Google Scholar 

  2. J. Harting, A. Komnik, H.J. Herrmann, Lattice-Boltzmann Simulations of Transport Phenomena and Structuring in Suspensions, in Behavior of Granular Media, edited by P. Walzel, R. Grochowski, C.A. Krülle, S.J. Linz, Vol. 9 of Schriftenreihe Mechanische Verfahrenstechnik (Shaker Verlag, Aachen, 2006) p. 3.

  3. A. Komnik, J. Harting, H.J. Herrmann, J. Stat. Mech.: Theor. Exp. 12003 (2004).

  4. A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001).

    Google Scholar 

  5. D. Hänel, Molekulare Gasdynamik (Springer, Berlin, 2004).

  6. J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988).

    Google Scholar 

  7. B. Cichocki, M.L. Ekiel-Jezewska, E. Wajnryb, J. Chem. Phys. 111, 3265 (1999).

    Google Scholar 

  8. B. Cichocki, R.B. Jones, R. Kutteh, E. Wajnryb, J. Chem. Phys. 112, 2548 (2000).

    Google Scholar 

  9. G. Bossis, J.F. Brady, J. Chem. Phys. 80, 5141 (1984).

    Google Scholar 

  10. D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 262 (1984).

    Google Scholar 

  11. M. Linsenbühler, J.H. Werth, S.M. Dammer, H.A. Knudsen, H. Hinrichsen, K.E. Wirth, D.E. Wolf, Powder Technol. 167, 124 (2006).

  12. S. Kim, S.J. Karrila, Microhydrodynamics

  13. J.G. Kirkwood, J. Riseman, J. Chem. Phys. 16, 565 (1948).

    Google Scholar 

  14. R.E.D. Wames, W.F. Holland, M.C. Shen, J. Chem. Phys. 46, 2782 (1967).

    Google Scholar 

  15. I.M. Janosi, T. Tel, D.E. Wolf, J.A.C. Gallas, Phys. Rev. E. 56, 2858 (1997).

    Google Scholar 

  16. R.B. Jones, R. Schmitz, Physica A 149, 373 (1988).

  17. J. Rotne, S. Prager, J. Chem. Phys. 50, 4831 (1969).

    Google Scholar 

  18. E. Guazzelli, L. Oger (Editors), Interaction of Two Suspended Particles, NATO ASI Series (Kluwer Academic Publishers, 1995).

  19. P. Mazur, W. van Saarloos, Physica A 115, 21 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, H.A., Werth, J.H. & Wolf, D.E. Failure and success of hydrodynamic interaction models. Eur. Phys. J. E 27, 161–170 (2008). https://doi.org/10.1140/epje/i2008-10368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10368-5

PACS.

Navigation