The European Physical Journal E

, Volume 26, Issue 4, pp 427–434 | Cite as

Effect of substrate interactions on the melting behavior of thin polyethylene films



Polymer films have been known to change their physical properties when film thickness is decreased below a certain value. The cause of this phenomenon is still unclear but it has been suggested that interactions and/or chain free-volume changes at the surface of the films are largely responsible for this behavior. In this paper, the effect of substrate interactions on the behavior of polymer thin films is evaluated quantitatively. The infrared spectra of nanothin polyethylene (PE) films were recorded as a function of temperature and amount of substrate covering the surface of the film. The evolution of specific bands in the CH2 rocking region of the spectra was used to determine the melting temperature (T m ) of the material. Results show different variations in T m depending on the nature of the substrate, indicating that interactions dominate free-volume considerations in PE thin films. By varying the amount of surface coverage, a quantitative estimate of the heat of interaction was determined, which confirmed the importance of surface interactions.

PACS Melting of specific substances Polymers 68.60.Dv Thermal stability; thermal effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Colloids Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
  2. 2.
    Y. Grohens, Y. Holl, Langmuir 19, 10399 (2003).Google Scholar
  3. 3.
    G.D. Hetpas, D.L. Allara, J. Polym. Sci. B: Polym. Phys. 36, 1247 (1998).CrossRefGoogle Scholar
  4. 4.
    T.A. Tran, S. Said, Y. Grohens, Macromolecules 38, 3867 (2005).CrossRefGoogle Scholar
  5. 5.
    X. Wang, W. Zhou, Macromolecules 35, 6747 (2002).CrossRefGoogle Scholar
  6. 6.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).CrossRefADSGoogle Scholar
  7. 7.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).CrossRefADSGoogle Scholar
  8. 8.
    G.B. De Maggio, W.E. Frieze, D.W Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997).CrossRefADSGoogle Scholar
  9. 9.
    W.J. Otrs, J.H. Van Zanten, W. Wu, S.K. Satija, Phys. Rev. Lett. 71, 867 (1993).CrossRefADSGoogle Scholar
  10. 10.
    J.L. Keddie, R.A. Jones, R.A. Cory, Faraday Discuss. 98,219 (1994).CrossRefGoogle Scholar
  11. 11.
    G.G. Meyers, B.M. DeKoven, J.T. Seitz, Langmuir 8, 2330 (1992).CrossRefGoogle Scholar
  12. 12.
    T. Kajiyama, K. Tanaka, A. Takahara, Macromolecules 28, 3482 (1995).CrossRefGoogle Scholar
  13. 13.
    Y.C. Jean, Z.H. Cao, J.P. Yuan, C.M. Huang, B. Nielson, P. Asoka-Kumar, Phys. Rev. B 56, R8459 (1997).CrossRefADSGoogle Scholar
  14. 14.
    K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001).Google Scholar
  15. 15.
    L. Hartman, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).CrossRefGoogle Scholar
  16. 16.
    O.N. Tretinnikow, R.G. Zbankow, Macromolecules 37, 3543 (2004).CrossRefGoogle Scholar
  17. 17.
    P. Bernazzani, S.L. Simon, D.J. Plazek, K.L. Ngai, Eur. Phys. J. E 8, 201 (2002).CrossRefGoogle Scholar
  18. 18.
    H. Itadaki, Y. Nishimura, E. Sagisaka, Y. Grohens, Langmuir 22, 742 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Kojio, S. Jeon, S. Granick, Eur. Phys. J. E 8, 167 (2002).CrossRefGoogle Scholar
  20. 20.
    S.L. Simon, J.Y. Park, G.B. McKenna, Eur. Phys. J. E 8, 209 (2002).CrossRefGoogle Scholar
  21. 21.
    E. Manias, V. Kuppa, Eur. Phys. J. E 8, 193 (2002).CrossRefGoogle Scholar
  22. 22.
    Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).CrossRefGoogle Scholar
  23. 23.
    J.A. Forrest, J. Mattson, L. Borjesson, Eur. Phys. J. E 8, 129 (2002).CrossRefGoogle Scholar
  24. 24.
    C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002).CrossRefGoogle Scholar
  25. 25.
    R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Macro-molecules 38, 654 (2005).Google Scholar
  26. 26.
    F. Zhang, G. Baralia, A. Boborodea, C. Bailly, B. Nysten, A.M. Jonas, Langmuir 21, 7427 (2005).CrossRefGoogle Scholar
  27. 27.
    M.W.J. van der Wielen, M.A. Cohen Stuart, G.J. Fleer, Langmuir 14, 7065 (1998).CrossRefGoogle Scholar
  28. 28.
    G. Reiter, J.U. Sommer, Phys Rev. Lett. 90, 3771 (1998).CrossRefADSGoogle Scholar
  29. 29.
    A.M. Higgins, M. Sferrazza, R.A.L. Jones, P.C. Jukes, J.S. Sharp, L.E. Dryden, J. Webster, Eur. Phys. J. E 8, 137 (2002).CrossRefGoogle Scholar
  30. 30.
    R. Limary, P.F. Green, K.R. Shull, Eur. Phys. J. E 8, 103 (2002).CrossRefGoogle Scholar
  31. 31.
    Y. Wang, M. Rafailovich, J. Sokolov, D. Gersappe, T. Araki, Y. Zou, A.D.L. Kilcoyne, H. Ade, G. Marom, A. Lustiger, Phys. Rev. Lett. 96, 028303 (2006).Google Scholar
  32. 32.
    H.G. Haubruge, R. Daussin, A.M. Jonas, R. Legras, J.C. Wittman, B. Lotz, Macromolecules 36, 4452 (2003).CrossRefGoogle Scholar
  33. 33.
    W. Stocker, M. Schumacher, S. Graff, A. Thierry, J.C. Wittman, B. Lotz, Macromolecules 31, 807 (1998).CrossRefGoogle Scholar
  34. 34.
    J. Zhang, D. Yang, A. Thierry, J.C. Wittman, B. Lotz, Macromolecules 34, 6261 (2001).CrossRefGoogle Scholar
  35. 35.
    A. Thierry, J.C. Wittmann, B. Lotz, V. da Costa, J. Le Moigne, M. Campione, A. Borghesi, A. Sassella, H. Plank, R. Resel, Organic Electron. 5, 7 (2004).CrossRefGoogle Scholar
  36. 36.
    T. Asano, S.K. Yan, J. Petermann, S. Yoshida, H. Tohyama, K. Imaizumi, T. Sugiyama, J. Macromol. Sci.-Phys. B 42, 489 (2003).CrossRefGoogle Scholar
  37. 37.
    W. Stocker, M. Schumacher, S. Graff, A. Thierry, J.C. Wittmann, B. Lotz, Macromolecules 31, 807 (1998).CrossRefGoogle Scholar
  38. 38.
    J. Zhang, D. Yang, A. Thierry, J.C. Wittmann, B. Lotz, Macromolecules 34, 6261 (2001).CrossRefGoogle Scholar
  39. 39.
    S. Yan, F. Katzenberg, J. Petermann, D. Yang, Y. Shen, C. Straupe, J.C. Wittman, B. Lotz, Polymer 41, 2613 (2000).CrossRefGoogle Scholar
  40. 40.
    S.K. Yan, D.C. Yang, J. Appl. Polym. Sci. 66, 2029 (1997).CrossRefGoogle Scholar
  41. 41.
    Y. Wang, S. Ge, M. Rafailovich, J. Sokolov, Y. Zou, H. Ade, J. Luning, A. Lustiger, G. Maron, Macromolecules 37, 3319 (2004).CrossRefGoogle Scholar
  42. 42.
    P. Bernazzani, V. Bich, H.P. Nguyen, A. Haine, C. Chapados, L. Dao, G. Delmas, Can. J. Chem. 76, 1674 (1998).CrossRefGoogle Scholar
  43. 43.
    S. Krimm, Adv. Polym. Sci. 2, 51 (1960).CrossRefGoogle Scholar
  44. 44.
    M. Maroncelli, S.P. Qi, H.L. Strauss, R.G. Snyder, J. Am. Chem. Soc. 104, 6237 (1982).CrossRefGoogle Scholar
  45. 45.
    E. Agosti, G. Zerbi, I. Ward, Polymer 34, 4219 (1993).Google Scholar
  46. 46.
    P.C. Painter, J. Havens, W.W. Hart, J.L. Koenig, J. Polym. Sci. Polym. Phys. 15, 1237 (1977).CrossRefGoogle Scholar
  47. 47.
    P. Bernazzani, R.F. Sanchez, M. Woodward, S. Williams, Determination of the Glass Transition Temperature of Thin Polyolefin Films Using Interference Fringes, to be published in Thin Solid Films (2008).Google Scholar
  48. 48.
    B. Wunderlich, Macromolecular Physics, Vol. 3 (Academic Press, New-York, 1976).Google Scholar
  49. 49.
    P.C. Painter, M.M. Coleman, Fundamentals of Polymer Science: An Introductory Text (CRC Press, Florida, 1997).Google Scholar
  50. 50.
    F. de Paula Santos, E. de Campos, M. Costa, F.C.L. Melo, R.Y. Honda, R.P. Mota, Mat. Res. 6, 353 (2003).Google Scholar
  51. 51.
    S.B. Zhang, S.H. Wei, Phys. Rev. Lett. 92, 086102 (2004).Google Scholar
  52. 52.
    R.H. French, R.M. Cannon, L.K. DeNoyer, Y.M. Chiang, Solid State Ionics 75, 3 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Chemistry and PhysicsLamar UniversityBeaumontUSA

Personalised recommendations