Advertisement

The European Physical Journal E

, Volume 26, Issue 4, pp 337–343 | Cite as

The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves

  • F. G. Mitri
  • Z. E. A. Fellah
Article

Abstract

Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.

PACS

43.20.+g General linear acoustics 43.25.+y Nonlinear acoustics 47.35.Rs Sound waves 78.66.Qn Polymers; organic compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997); D. McGloin, Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 364, 3521 (2006).CrossRefADSGoogle Scholar
  2. 2.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).CrossRefADSGoogle Scholar
  3. 3.
    S. Chu, Rev. Mod. Phys. 70, 685 (1998); C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998); W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998); R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nat. Phys. 2, 465 (2006).CrossRefADSGoogle Scholar
  4. 4.
    R.G. Holt, E.H. Trinh, Phys. Rev. Lett. 77, 1274 (1996).CrossRefADSGoogle Scholar
  5. 5.
    P.L. Marston, D.B. Thiessen, Ann. N.Y. Acad. Sci. 1027, 414 (2004).CrossRefGoogle Scholar
  6. 6.
    S.K. Chung, E.H. Trinh, J. Cryst. Growth 194, 384 (1998).CrossRefADSGoogle Scholar
  7. 7.
    H. Masuhara, T. Asahi, Y. Hosokawa, Pure Appl. Chem. 78, 2205 (2006).CrossRefGoogle Scholar
  8. 8.
    K. Svoboda, S.M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).CrossRefGoogle Scholar
  9. 9.
    H. Oana, K. Kubo, K. Yoshikawa, H. Atomi, T. Imanaka, Appl. Phys. Lett. 85, 5090 (2004); U.F. Keyser, B.N. Koeleman, S. van Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Nat. Phys. 2, 473 (2006); U.F. Keyser, J. van der Does, C. Dekker, N.H. Dekker, Rev. Sci. Instrum. 77, 105105 (2006).CrossRefADSGoogle Scholar
  10. 10.
    R. Huber, S. Burggraf, T. Mayer, S.M. Barns, P. Rossnagel, K.O. Stetter, Nature 376, 57 (1995).CrossRefADSGoogle Scholar
  11. 11.
    D. Chatterjee, P. Jain, K. Sarkar, Phys. Fluids 17, 100603 (2005).Google Scholar
  12. 12.
    D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Cancer Lett. 209, 171 (2004).CrossRefGoogle Scholar
  13. 13.
    Y.H. Lee, C.A. Peng, Gene Ther. 12, 625 (2005).CrossRefGoogle Scholar
  14. 14.
    H.M. Hertz, J. Appl. Phys. 78, 4845 (1995); J.G. McDaniel, R.G. Holt, Phys. Rev. E 61, 2204 (2000); R. Gomez-Medina, P. San Jose, A. Garcia-Martin, M. Lester, M. Nieto-Vesperinas, J.J. Saenz, Phys. Rev. Lett. 86, 4275 (2001); M.J. Marr-Lyon, D.B. Thiessen, P.L. Marston, Phys. Rev. Lett. 86, 2293 (2001); P.H. Jones, E. Stride, N. Saffari, Appl. Phys. Lett. 89, 081113 (2006).CrossRefADSGoogle Scholar
  15. 15.
    F.E. Borgnis, Rev. Mod. Phys. 25, 653 (1953).MATHCrossRefADSGoogle Scholar
  16. 16.
    T.F.W. Embleton, J. Acoust. Soc. Am. 26, 40 (1954); X. Chen, R.E. Apfel, J. Acoust. Soc. Am. 99, 713 (1996).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    E.H. Brandt, Nature 413, 474 (2001); F.G. Mitri, J. Phys. A 38, 9395 (2005); Eur. Phys. J. B 44, 71 (2005); F.G. Mitri, Z.E.A. Fellah, J. Phys. A 39, 6085 (2006); W. Wei, D.B. Thiessen, P.L. Marston, J. Acoust. Soc. Am. 116, 201 (2004).CrossRefADSGoogle Scholar
  18. 18.
    J. Lee, K.K. Shung, Ultrasound Med. Biol. 32, 1575 (2006).CrossRefGoogle Scholar
  19. 19.
    P.L. Marston, J. Acoust. Soc. Am. 120, 3518 (2006).CrossRefADSGoogle Scholar
  20. 20.
    F.G. Mitri, Ann. Phys. 323, 1604 (2008); F.G. Mitri, Z.E.A. Fellah, to be published in IEEE Trans. UFFC.MATHCrossRefADSGoogle Scholar
  21. 21.
    J. Wu, J. Acoust. Soc. Am. 89, 2140 (1991).CrossRefADSGoogle Scholar
  22. 22.
    T. Hasegawa, K. Yosioka, J. Acoust. Soc. Am. 46, 1139 (1969).MATHCrossRefADSGoogle Scholar
  23. 23.
    F.G. Mitri, Wave Motion 43, 12 (2005).CrossRefMathSciNetGoogle Scholar
  24. 24.
    T.K. Mandal, M.S. Fleming, D.R. Walt, Nano Lett. 2, 3 (2002); J.L. West, N.J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003); M.K. Corbierre, N.S. Cameron, R.B. Lennox, Langmuir 20, 2867 (2004); M.R. Gwinn, V. Vallyathan, Environ. Health Persp. 114, 1818 (2006); N.B. Inc., www.nanospectra.com.CrossRefGoogle Scholar
  25. 25.
    K. Mallick, M. Witcomb, M. Scurrell, Eur. Phys. J. E 20, 347 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Haruta, Gold Bull. 37, 27 (2004).Google Scholar
  27. 27.
    D.L. Feldheim, K.C. Grabar, M.J. Natan, T.E. Mallouk, J. Am. Chem. Soc. 118, 7640 (1996); D.L. Feldheim, C.D. Keating, Chem. Soc. Rev. 27, 1 (1998).CrossRefGoogle Scholar
  28. 28.
    S. Sershen, J. West, Adv. Drug Delivery Rev. 54, 1225 (2002); A.W. Smith, Adv. Drug Delivery Rev. 57, 1539 (2005).CrossRefGoogle Scholar
  29. 29.
    F.G. Mitri, Eur. Phys. J. B 43, 379 (2005).CrossRefADSGoogle Scholar
  30. 30.
    K. Yosioka, Y. Kawasima, H. Hirano, Acustica 5, 173 (1955).Google Scholar
  31. 31.
    G.R. Torr, Am. J. Phys. 52, 402 (1984).CrossRefADSGoogle Scholar
  32. 32.
    T. Hasegawa, T. Kido, T. Iizuka, C. Matsuoka, Acoust. Sci. Technol. 21, 145 (2000).Google Scholar
  33. 33.
    T. Hasegawa, J. Acoust. Soc. Am. 61, 1445 (1977).CrossRefADSGoogle Scholar
  34. 34.
    B. Hartmann, J. Jarzynski, J. Appl. Phys. 43, 4304 (1972).CrossRefADSGoogle Scholar
  35. 35.
    A.A. Doinikov, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 447, 447 (1994); Phys. Rev. E 54, 6297 (1996).MATHADSMathSciNetGoogle Scholar
  36. 36.
    S.D. Danilov, M.A. Mironov, J. Acoust. Soc. Am. 107, 143 (2000).CrossRefADSGoogle Scholar
  37. 37.
    F.G. Mitri, New J. Phys. 8, 138 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Mayo Clinic College of Medicine, Department of Physiology and Biomedical EngineeringUltrasound Research LaboratoryRochesterUSA
  2. 2.Laboratoire de Mécanique et d’AcoustiqueCNRS-UPR 7051MarseilleFrance

Personalised recommendations