Dynamic structure factor of a stiff polymer in a glassy solution

  • J. Glaser
  • O. Hallatschek
  • K. Kroy


We provide a comprehensive overview of the current theoretical understanding of the dynamic structure factor of stiff polymers in semidilute solution based on the wormlike chain (WLC) model. We extend previous work by computing exact numerical coefficients and an expression for the dynamic mean square displacement (MSD) of a free polymer and compare various common approximations for the hydrodynamic interactions, which need to be treated accurately if one wants to extract quantitative estimates for model parameters from experimental data. A recent controversy about the initial slope of the dynamic structure factor is thereby resolved. To account for the interactions of the polymer with a surrounding (sticky) polymer solution, we analyze an extension of the WLC model, the glassy wormlike chain (GWLC), which predicts near power law and logarithmic long-time tails in the dynamic structure factor.


61.25.he Polymer solutions 83.10.Kn Reptation and tube theories 67.70.Pj Polymers 


  1. 1.
    L. Le Goff, O. Hallatschek, E. Frey, F. Amblard, Phys. Rev. Lett. 89, 258101 (2002).CrossRefADSGoogle Scholar
  2. 2.
    C. Semmrich, T. Storz, J. Glaser, R. Merkel, A.R. Bausch, K. Kroy, Proc. Natl. Acad. Sci. U.S.A. 104, 20199 (2007).CrossRefADSGoogle Scholar
  3. 3.
    F. Pampaloni, G. Lattanzi, A. Jonas, T. Surrey, E. Frey, E. Florin, Proc. Natl. Acad. Sci. U.S.A. 103, 10248 (2006).CrossRefADSGoogle Scholar
  4. 4.
    M. Hohenadl, T. Storz, H. Kirpal, K. Kroy, R. Merkel, Biophys. J. 77, 2199 (1999).CrossRefADSGoogle Scholar
  5. 5.
    R. Winkler, S. Keller, J. Rädler, Phys. Rev. E 73, 41919 (2006).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. Arcovito, F. Bassi, M. Despirito, E. Distasio, M. Sabetta, Biophys. Chem. 67, 287 (1997).CrossRefGoogle Scholar
  7. 7.
    M. Pierno, L. Maravigna, R. Piazza, L. Visai, P. Speziale, Phys. Rev. Lett. 96, 28108 (2006).CrossRefADSGoogle Scholar
  8. 8.
    R. Vincent, D. Pinder, Y. Hemar, M. Williams, Phys. Rev. E 76, 031909 (2007).CrossRefADSGoogle Scholar
  9. 9.
    L. Carrick, M. Tassieri, T. Waigh, A. Aggeli, N. Boden, C. Bell, J. Fisher, E. Ingham, R. Evans, Langmuir 21, 3733 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Buchanan, M. Atakhorrami, J. Palierne, F. MacKintosh, C. Schmidt, Phys. Rev. E 72, 11504 (2005).CrossRefADSGoogle Scholar
  11. 11.
    O. Hallatschek, E. Frey, K. Kroy, Phys. Rev. E 75, 31905 (2007).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S. Fujime, T. Maeda, Macromolecules 18, 191 (1985).CrossRefADSGoogle Scholar
  13. 13.
    E. Farge, A. Maggs, Macromolecules 26, 5041 (1993).CrossRefADSGoogle Scholar
  14. 14.
    P.A. Janmey, S. Hvidt, J. Käs, D. Lerche, A. Maggs, E. Sackmann, M. Schliwa, T.P. Stossel, J. Biol. Chem. 269, 32503 (1994).Google Scholar
  15. 15.
    R. Götter, K. Kroy, E. Frey, M. Bärmann, E. Sackmann, Macromolecules 29, 30 (1996).CrossRefADSGoogle Scholar
  16. 16.
    K. Kroy, E. Frey, Scattering in Polymeric and Colloidal Systems (Gordon and Breach, 2000) p. 197.Google Scholar
  17. 17.
    K. Kroy, E. Frey, Phys. Rev. E 55, 3092 (1997).CrossRefADSGoogle Scholar
  18. 18.
    T.B. Liverpool, A.C. Maggs, Macromolecules 34, 6064 (2001).CrossRefADSGoogle Scholar
  19. 19.
    I. Nyrkova, A. Semenov, Phys. Rev. E 76, 11802 (2007).CrossRefADSGoogle Scholar
  20. 20.
    D. Morse, Phys. Rev. E 63, 31502 (2001).CrossRefADSGoogle Scholar
  21. 21.
    K. Kroy, J. Glaser, New J. Phys. 9, 416 (2007).CrossRefADSGoogle Scholar
  22. 22.
    J. Liu, M. Gardel, K. Kroy, E. Frey, B. Hoffman, J. Crocker, A. Bausch, D. Weitz, Phys. Rev. Lett. 96, 118104 (2006). CrossRefADSGoogle Scholar
  23. 23.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science B.V., Amsterdam, 1996).Google Scholar
  24. 24.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1988).Google Scholar
  25. 25.
    J. Glaser, unpublished.Google Scholar
  26. 26.
    H. Isambert, A. Maggs, Macromolecules 29, 1036 (1996).CrossRefADSGoogle Scholar
  27. 27.
    K. Kroy, Curr. Opin. Colloid Interface Sci. 11, 56 (2006).CrossRefGoogle Scholar
  28. 28.
    H. Hinsch, J. Wilhelm, E. Frey, Eur. Phys. J. E 24, 35 (2007).CrossRefGoogle Scholar
  29. 29.
    T. Mason, T. Gisler, K. Kroy, E. Frey, D. Weitz, J. Rheol. 44, 917 (2000).CrossRefADSGoogle Scholar
  30. 30.
    W. Götze, Les Houches, Session LI, Liquides, Cristallisation et Transition Vitreuse (North Holland, Amsterdam, 1991) p. 287.Google Scholar
  31. 31.
    A. Moreno, J. Colmenero, J. Chem. Phys. 124, 184906 (2006).CrossRefADSGoogle Scholar
  32. 32.
    B. Fabry, G. Maksym, J. Butler, M. Glogauer, D. Navajas, J. Fredberg, Phys. Rev. Lett. 87, 148102 (2001).CrossRefADSGoogle Scholar
  33. 33.
    G. Lenormand, J. Fredberg, Biorheol. 43, 1 (2006).Google Scholar
  34. 34.
    A. Sokolov, A. Kisliuk, V. Novikov, K. Ngai, Phys. Rev. B 63, 172204 (2001).CrossRefADSGoogle Scholar
  35. 35.
    J. Glaser, C. Hubert, K. Kroy, Dynamics of sticky polymer solutions, in Proceedings of the 9th International Conference Path Integrals -- New Trends and Perspectives, edited by W. Janke, A. Pelster (World Scientific, 2008) to appear.Google Scholar
  36. 36.
    W. Helfrich, W. Harbich, Chem. Scr. 25, 32 (1985).Google Scholar
  37. 37.
    D. Daniels, M. Turner, J. Chem. Phys. 121, 7401 (2004).CrossRefADSGoogle Scholar
  38. 38.
    S. van Teeffelen, K. Kroy, unpublished.Google Scholar
  39. 39.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).CrossRefADSGoogle Scholar
  40. 40.
    C. Heussinger, M. Bathe, E. Frey, Phys. Rev. Lett. 99, 48101 (2007).CrossRefADSGoogle Scholar
  41. 41.
    R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth, Adv. Comput. Math. 5, 329 (1996).CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    D. Barry, J. Parlange, L. Li, H. Prommer, C. Cunningham, F. Stagnitti, Math. Comput. Simulation 53, 95 (2000).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  2. 2.Lyman LaboratoryHarvard UniversityCambridgeUSA
  3. 3.Hahn-Meitner Institut BerlinBerlinGermany

Personalised recommendations