Advertisement

The European Physical Journal E

, Volume 25, Issue 3, pp 299–307 | Cite as

New organic FET-like photoactive device, experiments and DFT modeling

  • I. Kratochvılová
  • S. Nešprek
  • J. Šebera
  • S. Záliš
  • M. Pavelka
  • G. Wang
  • J. Sworakowski
Regular Article

Abstract.

We present the possible construction of an organic FET-like photoactive device in which source-drain current through a phthalocyanine ( H2Pc film is affected by a photo-induced dipolar field in a photoactive “gate” electrode. The influence of the dipolar electric field on charge transfer between H2Pc molecules is modeled by DFT quantum-chemical calculations on H2Pc dimers and tetramers.

PACS.

85.35.-p Nanoelectronic devices 73.63.-b Electronic transport in nanoscale materials and structures 31.15.-p Calculations and mathematical techniques in atomic and molecular physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Müllen, G. Wegner (Editors), Electronic Materials: The Oligomeric Approach (Wiley-VCH, Weinheim, 1998).Google Scholar
  2. 2.
    J. Simon, P. Bassoul, Design of Molecular Materials. Supramolecular Engineering (Wiley, Chichester, 2000).Google Scholar
  3. 3.
    S. Záliš, I. Kratochvílová, A. Zambova, J. Mbindyo, T.E. Mallouk, T.S. Mayer, Eur. Phys. J. E 18, 201 (2005).CrossRefADSGoogle Scholar
  4. 4.
    I. Kratochvílová, A. Zambova, J. Mbindyo, B. Razavi, J. Holakovský, Mod. Phys. Lett. B 16, 161 (2002).CrossRefADSGoogle Scholar
  5. 5.
    H. Dürr, H. Bouas Laurent (Editors), Photochromism, Molecules and Systems (Elsevier, Amsterdam, 1990).Google Scholar
  6. 6.
    J.C. Crano, R.J. Guglielmetti (Editors), Organic Photochromic and Thermochromic Compounds (Plenum Press, New York, 1999).Google Scholar
  7. 7.
    S. Nešpurek, J. Sworakowski, Thin Solid Films 393, 168 (2001).CrossRefADSGoogle Scholar
  8. 8.
    S. Nešpurek, P. Toman, J. Sworakovski, J. Lipinski, Curr. Appl. Phys. 2, 299 (2002).CrossRefGoogle Scholar
  9. 9.
    P. Toman, W. Bartkowiak, S. Nešpurek, J. Sworakowski, R. Zalesny, Chem. Phys. 316, 267 (2005).CrossRefADSGoogle Scholar
  10. 10.
    P. Toman, S. Nešpurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, M. Menšík, Polym. Adv. Technol. 17, 673 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Nešpurek, P. Toman, M. Menšík, I. Kratochvílová, J. Sworakowski, T. Mallouk, J. Optoelectron. Adv. Mat. 9, 134 (2007).Google Scholar
  12. 12.
    S. Nešpurek, G. Wang, P. Toman, J. Sworakowski, W. Bartkowiak, M. Iwamoto, C. Combellas, Mol. Cryst. Liq. Cryst. 430, 127 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Nešpurek, G. Wang, F. Schauer, F. Kajzar, Mol. Cryst. Liq. Cryst. 447, 265 (2006).Google Scholar
  14. 14.
    S. Nešpurek, Mater. Sci. Eng. C8-9, 319 (1999).Google Scholar
  15. 15.
    S. Nešpurek, R.H.G. Hart, J.S. Bonham, L.E. Lyons, Aust. J. Chem. 38, 1061 (1985).Google Scholar
  16. 16.
    K. Toyota, J. Hasegawa, H. Nakatsuji, J. Phys. Chem. A 101, 446 (1997).CrossRefGoogle Scholar
  17. 17.
    H. Cortina, M.L. Senent, V.G. Smeyers, J. Phys. Chem. A 107, 8968 (2003).CrossRefGoogle Scholar
  18. 18.
    N. Kobayashi, T. Fukuda, D. Lelievre, Inorg. Chem. 39, 3632 (2000).CrossRefGoogle Scholar
  19. 19.
    P.N. Day, Z. Wang, R. Pachter, J. Mol. Struct. (Theochem.) 455, 33 (1998).CrossRefGoogle Scholar
  20. 20.
    Y. Zhao, D.G. Truhlar, J. Phys. Chem. A 108, 6908 (2004).CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, D.G. Truhlar, J. Chem. Theor. Comput. 3, 289 (2007).CrossRefGoogle Scholar
  22. 22.
    P. Hobza, R. Zahradnik, K. Muller-Dethlefs, Collect. Czech. Chem. Commun. 71, 443 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Kabelac, E.C. Sherer, C.J. Cramer, P. Hobza, Chem.-Eur. J. 13, 2067 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, D.G. Truhlar, J. Chem. Theor. Comput. 1, 415 (2005).CrossRefGoogle Scholar
  25. 25.
    Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, (Gaussian, Inc., Wallingford CT, 2004).Google Scholar
  26. 26.
    M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople, M.S. Gordon, J. Chem. Phys. 77, 3654 (1982).CrossRefADSGoogle Scholar
  27. 27.
    Z. Slanina, P. Pulay, S. Nagase, J. Chem. Theor. Comput. 2, 782 (2006).CrossRefGoogle Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefADSGoogle Scholar
  29. 29.
    S. Hirata, M.T. Hackler, Y. Zhao, P.-D. Fan, R.J. Harrison, M. Dupuis, D.M.A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A.A. Auer, M. Nooijen, E. Brown, G. Cisneros, G.I. Fann, H. Früchtl, J. Garza, K. Hirao, R. Kendall, J.A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version5.0 (2006), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.Google Scholar
  30. 30.
    S. Nešpurek, J. Sworakovski, A. Kadashchuk, IEEE Trans. Diel. Electron. Insul. 8, 432 (2001).CrossRefGoogle Scholar
  31. 31.
    J. Sworakowski, Mol. Liq. Cryst. 19, 259 (1973).CrossRefGoogle Scholar
  32. 32.
    J. Sworakowski, S. Nešpurek, Polish J. Chem. 72, 163 (1998).Google Scholar
  33. 33.
    H. Valerián, E. Brynda, S. Nešpurek, W. Schnabel, J. Appl. Phys. 78, 6071 (1995).CrossRefADSGoogle Scholar
  34. 34.
    J. Sworakowski, S. Nešpurek, P. Toman, G. Wang, W. Bartkowiak, Synt. Met. 147, 241 (2004).CrossRefGoogle Scholar
  35. 35.
    D. Hoesterrey, G.M. Letson, J. Phys. Chem. Solids 24, 1609 (1963).CrossRefADSGoogle Scholar
  36. 36.
    S.M. Bayliss, S. Heutz, G. Rumbles, T.S. Jones, Phys. Chem. Chem. Phys. 1, 3673 (1999).CrossRefGoogle Scholar
  37. 37.
    R.D. Gould, Coord. Chem. Rev. 156, 237 (1996).CrossRefGoogle Scholar
  38. 38.
    35. M. Ashida, N. Uyeda, E. Suito, Bull. Chem. Soc. Jpn. 39, 2616 (1966).CrossRefGoogle Scholar
  39. 39.
    A. Farazdel, M. Dupuis, E. Clementi, A. Aviram, J. Am. Chem. Soc. 112, 4206 (1990).CrossRefGoogle Scholar
  40. 40.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Chem. Rev. 107, 926 (2007).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • I. Kratochvılová
    • 1
  • S. Nešprek
    • 2
  • J. Šebera
    • 2
    • 3
  • S. Záliš
    • 3
  • M. Pavelka
    • 3
  • G. Wang
    • 4
  • J. Sworakowski
    • 5
  1. 1.Institute of PhysicsAS CR, v. v. i.Prague 8Czech Republic
  2. 2.Institute of Macromolecular ChemistryAS CR, v. v. i.Prague 6Czech Republic
  3. 3.J. Heyrovský Institute of Physical ChemistryAS CR, v. v. i.Prague 8Czech Republic
  4. 4.Department of ChemistryTsinghua UniversityBeijingPRC
  5. 5.Institute of Physical and Theoretical ChemistryWrocław University of TechnologyWrocławPoland

Personalised recommendations