The European Physical Journal E

, Volume 25, Issue 2, pp 139–152 | Cite as

Nanodroplets on rough hydrophilic and hydrophobic surfaces

Regular Article

Abstract.

We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.

PACS.

68.08.Bc Wetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Young, Philos. Trans. R. Soc. London, Ser. A 95, 65 (1805).Google Scholar
  2. 2.
    P.S. Laplace, Oeuvres (Imprimerie Royale, Paris, 1847).Google Scholar
  3. 3.
    J. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).Google Scholar
  4. 4.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefADSGoogle Scholar
  5. 5.
    D. Quere, Rep. Prog. Phys. 68, 2495 (2005).CrossRefADSGoogle Scholar
  6. 6.
    T.S. Chow, J. Phys.: Condens. Matter 10, L445 (1998).Google Scholar
  7. 7.
    N.A. Patankar, Langmuir 19, 1249 (2003).CrossRefGoogle Scholar
  8. 8.
    W. Chen, Langmuir 15, 3395 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Callies, D. Quere, Soft Matter 1, 55 (2005).CrossRefGoogle Scholar
  10. 10.
    L.W. Schwartz, S. Garoff, Langmuir 1, 219 (1985).CrossRefGoogle Scholar
  11. 11.
    C. Yang, U. Tartaglino, B.N.J. Persson, Phys. Rev. Lett. 97, 116103 (2006).CrossRefADSGoogle Scholar
  12. 12.
    C.W. Extrand, S.I. Moon, P. Hall, D. Schmidt, Langmuir 23, 8882 (2007).CrossRefGoogle Scholar
  13. 13.
    C. Yang, U. Tartaglino, B.N.J. Persson, J. Phys.: Condens. Matter 50, 11521 (2006).CrossRefADSGoogle Scholar
  14. 14.
    S.L. Ren, S.R. Yang, Y.P. Zhao, T.X. Yu, X.D. Xiao, Surf. Sci. 546, 64 (2003).CrossRefADSGoogle Scholar
  15. 15.
    M. Nosonovsy, B. Bhushan, Microsyst. Technol. 11, 535 (2005).CrossRefGoogle Scholar
  16. 16.
    See http://www.lotus-effect.com for information involving surface roughness in relation to hydrophobicity and surface self-cleaning in biological systems.Google Scholar
  17. 17.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997).CrossRefGoogle Scholar
  18. 18.
    C. Neinhuis, W. Barthlott, Ann. Botany 79, 667 (1997).CrossRefGoogle Scholar
  19. 19.
    A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Schibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 100, 19512 (1996).CrossRefGoogle Scholar
  21. 21.
    R. Blossey, Nature Mat. 2, 301 (2003).CrossRefADSGoogle Scholar
  22. 22.
    N.A. Patankar, Langmuir 20, 8209 (2004).CrossRefGoogle Scholar
  23. 23.
    Y.T. Cheng, D.E. Rodak, Appl. Phys. Lett. 86, 144101 (2005).CrossRefADSGoogle Scholar
  24. 24.
    A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132, 31 (2001).Google Scholar
  25. 25.
    S.R. Coulson, L. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, J. Phys. Chem. B 104, 8836 (2000).CrossRefGoogle Scholar
  26. 26.
    H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299, 1377 (2003).CrossRefGoogle Scholar
  27. 27.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
  28. 28.
    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).CrossRefGoogle Scholar
  29. 29.
    R.E. Johnson, R.H. Dettre, J. Phys. Chem. 68, 1744 (1964).CrossRefGoogle Scholar
  30. 30.
    A. Dupuis, J.M. Yeomans, Langmuir 21, 2624 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Suzuki, Carbon 32, 577 (1994).CrossRefGoogle Scholar
  32. 32.
    T.J. Barton, Chem. Mater. 11, 2633 (1999).CrossRefGoogle Scholar
  33. 33.
    J. Bico, C. Marzolin, D. Quere, Europhys. Lett. 47, 220 (1999).CrossRefADSGoogle Scholar
  34. 34.
    G. Carbone, L. Mangialardi, Eur. Phys. J. E 16, 67 (2005).CrossRefGoogle Scholar
  35. 35.
    The surface energy of a liquid does, in fact, also depend on the magnification because of thermally excited capillary waves which contribute to the surface energy of a liquid. However, the dependence of $\gamma_{\ab{lv}}(\zeta)$ on the magnification $\zeta$ is rather weak and we will neglect this effect in the present study.Google Scholar
  36. 36.
    Here we assume that the surface free energy per unit area does not depend on the orientation of the substrate surface, which may be a reasonable approximation for many amorphous materials, but which in general fails for crystalline materials.Google Scholar
  37. 37.
    B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).Google Scholar
  38. 38.
    S. Herminghaus, Europhys. Lett. 52, 165 (2000).CrossRefADSGoogle Scholar
  39. 39.
    A. Lafuma, D. Quere, Nature Mat. 2, 457 (2003).CrossRefADSGoogle Scholar
  40. 40.
    X. Gao, L. Jiang, Nature 432, 36 (2004). See also R.B. Suter, G.E. Stratton, P.R. Miller, J. Arachnol. 32, 11 (2004).CrossRefADSGoogle Scholar
  41. 41.
    C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006).CrossRefGoogle Scholar
  42. 42.
    V.N. Samoilov, B.N.J. Persson, J. Chem. Phys. 120, 1997 (2004).CrossRefADSGoogle Scholar
  43. 43.
    W.I. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).CrossRefGoogle Scholar
  44. 44.
    D.K. Dysthe, A.H. Fuchs, B. Rousseau, J. Chem. Phys. 112, 7581 (2000).CrossRefADSGoogle Scholar
  45. 45.
    U. Tartaglino, I.M. Sivebaek, B.N.J. Persson, E. Tosatti, J. Chem. Phys. 125, 014704 (2006).CrossRefADSGoogle Scholar
  46. 46.
    B.N.J. Persson, O. Albohl, U. Tartaglino, V.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).Google Scholar
  47. 47.
    C. Yang, B.N.J. Persson, Phys. Rev. Lett. 100, 024303 (2008).CrossRefADSGoogle Scholar
  48. 48.
    B.N.J. Persson, E. Tosatti, J. Chem. Phys. 115, 5597 (2001).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations