Advertisement

The European Physical Journal E

, Volume 24, Issue 2, pp 193–199 | Cite as

Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy

Regular Article

Abstract.

Polarized Fourier Transform Infrared (FTIR) spectroscopy is employed to study structure-property relationships in major ampullate spider silk being exposed to an external mechanical strain. From the measured infrared dichroism of aminoacid-residue - specific bands the molecular order parameter, the frequency width at half-maximum (FWHM) and the spectral position of the absorption maximum are determined in dependence on the external strain. For the highly ordered alanine-rich β sheets a change in the vibrational potential is found for macroscopic strains as low as a few percent. It can be quantitatively described by a quantum-mechanical approach in which the mechanical strain is treated as a weak external perturbation. The immediate microscopic response to the external field proves that β -sheeted crystals are tightly interconnected by pre-stretched chains as suggested recently (Y. Liu et al., Nat. Mater. 4, 901 (2005)).

PACS.

87.15.-v Biomolecules: structure and physical properties 87.68.+z Biomaterials and biological interfaces 87.64.Je Infrared and Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kubik, Angew. Chem., Int. Ed. 41, 2721 (2002).CrossRefGoogle Scholar
  2. 2.
    R.F. Service, Science 295, 419 (2002).CrossRefGoogle Scholar
  3. 3.
    E. Stokstad, Science 287, 1378 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Kerkan, C. Viney, D. Kaplan, S. Lombardi, Nature 349, 596 (1991).CrossRefADSGoogle Scholar
  5. 5.
    Z. Shao, F. Vollrath, Y. Yang, H.C. Thogersen, Macromolecules 36, 1157 (2003).CrossRefGoogle Scholar
  6. 6.
    H.-J. Jin, D.L. Kaplan, Nature 424, 1057 (2003).CrossRefADSGoogle Scholar
  7. 7.
    F. Vollrath, D.P. Knight, Nature 410, 541 (2001).CrossRefADSGoogle Scholar
  8. 8.
    L.C. Miller, S. Putthanarat, R.K. Eby, W. Adams, Int. J. Biol. Macromol. 24, 159 (1999).CrossRefGoogle Scholar
  9. 9.
    Z. Yang, D.T. Grubb, L.W. Jelinski, Macromolecules 30, 8524 (1997).CrossRefGoogle Scholar
  10. 10.
    A.D. Parkhe, S.K. Seeley, K. Gardner, L. Thompson, R.V. Lewis, J. Mol. Recognit. 10, 1 (1997).CrossRefGoogle Scholar
  11. 11.
    C. Riekel, F. Vollrath, Int. J. Biol. Macromol. 29, 203 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Glisovic, J. Thieme, P. Guttmann, T. Salditt, Int. J. Biol. Macromol. 40, 87 (2007).CrossRefGoogle Scholar
  13. 13.
    D.T. Grubb, L.W. Jelinski, Macromolecules 30, 2860 (1997).CrossRefGoogle Scholar
  14. 14.
    A.H. Simmons, C.A. Michal, L.W. Jelinski, Science 271, 84 (1996).CrossRefADSGoogle Scholar
  15. 15.
    J. Kümmerlen, J.D. van Beek, F. Vollrath, B.H. Meier, Macromolecules 29, 2920 (1996).CrossRefGoogle Scholar
  16. 16.
    J.D. van Beek, S. Hess, F. Vollrath, B.H. Meier, Proc. Natl. Acad. Sci. U.S.A. 99, 10266 (2002).CrossRefGoogle Scholar
  17. 17.
    T. Köhler, F. Vollrath, J. Exp. Zool. 271, 1 (1995).CrossRefGoogle Scholar
  18. 18.
    B.O. Swanson, A.A. Blackledge, J. Beltran, C.Y. Hayashi, Appl. Phys. A 82, 213 (2006).CrossRefADSGoogle Scholar
  19. 19.
    D. Porter, F. Vollrath, Z. Shao, Eur. Phys. J. E 16, 199 (2005).CrossRefGoogle Scholar
  20. 20.
    B.L. Thiel, K.B. Guess, C. Viney, Biopolymers 41, 703 (1997).CrossRefGoogle Scholar
  21. 21.
    R.V. Lewis, Acc. Chem. Res. 25, 392 (1992).CrossRefGoogle Scholar
  22. 22.
    M.E. Rousseau, T. Lefèvre, L. Beaulieu, T. Asakura, M. Pézolet, Biomacromolecules 5, 2247 (2004).CrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Sirichaisit, V.L. Brookes, R.J. Young, F. Vollrath, Biomacromolecules 4, 387 (2003).CrossRefGoogle Scholar
  24. 24.
    Z. Shao, F. Vollrath, J. Sirichaisit, R.J. Young, Polymer 40, 2493 (1999).CrossRefGoogle Scholar
  25. 25.
    J. Sirichaisit, R.J. Young, F. Vollrath, Polymer 41, 1223 (2000).CrossRefGoogle Scholar
  26. 26.
    J.M. Gosline, M.W. Denny, M.E. Demont, Nature 309, 551 (1984).CrossRefADSGoogle Scholar
  27. 27.
    Y. Termonia, Macromolecules 27, 7378 (1994).CrossRefGoogle Scholar
  28. 28.
    F. Vollrath, D. Porter, Appl. Phys. A 82, 205 (2006).CrossRefADSGoogle Scholar
  29. 29.
    E. Klimov, G.G. Hoffmann, A. Gumenny, H.W. Siesler, Macromol. Rapid Commun. 26, 1093 (2005).CrossRefGoogle Scholar
  30. 30.
    C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Int. J. Biol. Macromol. 24, 271 (1999).CrossRefGoogle Scholar
  31. 31.
    J. Gatesy, C. Hayashi, D. Motriuk, J. Woods, R. Lewis, Science 291, 2603 (2001).CrossRefADSGoogle Scholar
  32. 32.
    D. Sapede, T. Seyde, V.T. Forsyth, M.M. Koza, R. Schweins, F. Vollrath, C. Riekel, Macromolecules 38, 8447 (2005).CrossRefGoogle Scholar
  33. 33.
    W. Tang, Y. Zhou, J. Zhang, Meas. Sci. Technol. 10, N119 (1999).Google Scholar
  34. 34.
    G.V. Guinea, J. Pérez-Rigueiro, G.R. Plaza, M. Elices, Biomacromolecules 7, 2173 (2006).CrossRefGoogle Scholar
  35. 35.
    J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, J. Exp. Biol. 202, 3295 (1999).Google Scholar
  36. 36.
    F.I. Bell, I.J. McEwen, C. Viney, Nature 416, 37 (2002).CrossRefADSGoogle Scholar
  37. 37.
    J.M. Gosline, M.E. DeMont, M.W. Denny, Endeavour 10, 37 (1986).CrossRefGoogle Scholar
  38. 38.
    P.T. Eles, C.A. Michal, Biomacromolecules 5, 661 (2004).CrossRefGoogle Scholar
  39. 39.
    A.M. Dwivedi, S. Krimm, Macromolecules 15, 186 (1982).CrossRefGoogle Scholar
  40. 40.
    T. Isemura, H. Okabayashi, S. Sakakibara, Biopolymers 6, 307 (1968).CrossRefGoogle Scholar
  41. 41.
    W.H. Moore, S. Krimm, Biopolymers 15, 2465 (1976).CrossRefGoogle Scholar
  42. 42.
    K. Taga, M.G. Sowa, J. Wang, H. Etori, T. Yoshida, H. Okabayashi, H.H. Mantsch, Vib. Spectrosc. 14, 143 (1997).CrossRefGoogle Scholar
  43. 43.
    A. Gupta, P. Tandon, V.D. Gupta, S. Rastogi, Polymer 38, 2389 (1997).CrossRefGoogle Scholar
  44. 44.
    V.D. Gupta, R.D. Singh, A.M. Dwivedi, Biopolymers 12, 1377 (1973).CrossRefGoogle Scholar
  45. 45.
    B. Jasse, J.L. Koenig, Polym. Rev. 17, 61 (1979).CrossRefGoogle Scholar
  46. 46.
    A. Simmons, E. Ray, L.W. Jelinski, Macromolecules 27, 5235 (1994).CrossRefGoogle Scholar
  47. 47.
    Y. Liu, Z. Shao, F. Vollrath, Nat. Mater. 4, 901 (2005).CrossRefADSGoogle Scholar
  48. 48.
    F. Schabl, Quantenmechanik, 6th ed. (Springer, Berlin, 2002).Google Scholar
  49. 49.
    W.H. Moore, D.O. Hummel, Physikalische Chemie, 4th ed. (de Gruyter, Berlin, 1986).Google Scholar
  50. 50.
    E.F. de Lima, J.E.M. Hornos, J. Phys. B: At. Mol. Opt. Phys. 38, 815 (2005).CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    P. Papadopoulos, J. Sölter, F. Kremer, submitted to Biophys. J. (2007).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Experimentelle Physik IUniversität LeipzigLeipzigGermany

Personalised recommendations