The European Physical Journal E

, Volume 23, Issue 3, pp 319–328 | Cite as

Field-temperature phase diagrams in chiral tilted smectics, evidencing ferroelectric and ferrielectric phases

  • J. P. Marcerou
  • H. T. Nguyen
  • N. Bitri
  • A. Gharbi
  • S. Essid
  • T. Soltani
Regular Article


Usual ferroelectric compounds undergo a paraelectric-to-ferroelectric phase transition when the susceptibility of the electric polarization density changes its sign. The temperature is the only thermodynamic field that governs the phase transition. Chiral tilted smectics may also present an improper ferroelectricity when there is a tilt angle between the average long axis direction and the layer normal. The tilt angle is the order parameter of the phase transition which is governed by the temperature. Although the electric susceptibility remains positive, a polarization proportional to the tilt appears due to their linear coupling allowed by the chiral symmetry. Further complications come in when the chirality increases, as new phases are encountered with the same tilt inside the layers but a distribution of the azimuthal direction which is periodic with a unit cell of two ( SmCA * , three ( SmCFi1 * , four ( SmCFi2 * or more ( SmCα * layers. In most of these phases, the layer normal is a symmetry axis so there is no macroscopic polarization except for the SmCFi1 * in which the average long axis is tilted so the phase is ferrielectric. By studying a particular compound with only a SmCFi2 * and a SmCα * phase, we show that we recover the uniformly tilted ferroelectric SmC* when applying an electric field. We are thus led to build field-temperature phase diagrams for this class of compounds by combining different experimental techniques described here.


61.30.-v Liquid crystals 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order 77.84.Nh Liquids, emulsions, and suspensions; liquid crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).Google Scholar
  2. 2.
    Y. Galerne, L. Liebert, Phys. Rev. Lett. 64, 906 (1990).CrossRefADSGoogle Scholar
  3. 3.
    A. de Vries, Mol. Cryst. Liq. Cryst. Lett. 41, 27 (1977).CrossRefGoogle Scholar
  4. 4.
    R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975).Google Scholar
  5. 5.
    S. Chandrasekhar, Liquid Crystals, 2nd ed. (University Press, Cambridge, 1992).Google Scholar
  6. 6.
    C. Bahr, G. Heppke, Mol. Cryst. Liq. Cryst. Lett. 4, 31 (1986).Google Scholar
  7. 7.
    A.D.L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K. Furukawa, A. Kishi, Jpn. J. Appl. Phys. 28, L1261 (1989).Google Scholar
  8. 8.
    P. Mach, R. Pindak, A.M. Levelut, P. Barois, H.T. Nguyen, C.C. Huang, L. Furenlid, Phys. Rev. Lett. 81, 1015 (1998).CrossRefADSGoogle Scholar
  9. 9.
    A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe, J. Mater Chem. 4, 997 (1994).CrossRefGoogle Scholar
  10. 10.
    N.M. Shtykov, A.D.L. Chandani, A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E. 71, 021711 (2005).CrossRefADSGoogle Scholar
  11. 11.
    A. Cady, J.A. Pitney, R. Pindak, L.S. Matkin, S.J. Watson, H.F. Gleeson, P. Cluzeau, P. Barois, A.M. Levelut, W. Caliebe, Phys. Rev. E 64, 050702(R) (2001).CrossRefADSGoogle Scholar
  12. 12.
    N.W. Roberts, S. Jaradat, L.S. Hirst, M.S. Thurlow, Y. Wang, S.T. Wang, Z.Q. Liu, C.C. Huang, J. Bai, R. Pindak, H.F. Gleeson, Europhys. Lett. 72, 976 (2005).CrossRefADSGoogle Scholar
  13. 13.
    D.A. Olson, X.F. Han, A. Cady, C.C. Huang, Phys. Rev. E 66, 021702 (2002).CrossRefADSGoogle Scholar
  14. 14.
    T. Matsumoto, A. Fukuda, M. Johno, Y. Motoyama, T. Isozaki, T. Yui, S.S. Seomun, M. Yamashita, J. Mater Chem. 9, 2051 (1999).CrossRefGoogle Scholar
  15. 15.
    T. Carlsson, B. Zeks, A. Levstik, C. Filipic, R. Blinc, Phys. Rev. A 36, 1484 (1987).CrossRefADSGoogle Scholar
  16. 16.
    H. Orihara, Y. Ishibashi, Jpn. J. Appl. Phys. 29, L115 (1990).Google Scholar
  17. 17.
    H. Sun, H. Orihara, Y. Ishibashi, J. Phys. Soc. Jpn. 60, 1991 (1991).CrossRefGoogle Scholar
  18. 18.
    A. Roy, N.V. Madhusudana, Europhys. Lett. 36, 221 (1996).CrossRefADSGoogle Scholar
  19. 19.
    A. Roy, N.V. Madhusudana, Eur. Phys. J. E. 1, 319 (2000).Google Scholar
  20. 20.
    N. Vaupotic, M. Cepic, Phys. Rev. E 71, 041701 (2005).CrossRefADSGoogle Scholar
  21. 21.
    V.L. Lorman, Liq. Cryst. 20, 267 (1996).CrossRefGoogle Scholar
  22. 22.
    A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E 74, 011705 (2006).CrossRefADSGoogle Scholar
  23. 23.
    F. Beaubois, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Eur. Phys. J. E 3, 273 (2000).CrossRefGoogle Scholar
  24. 24.
    C. Bahr, G. Heppke, Mol. Cryst. Liq. Cryst. 150, 313 (1987).CrossRefGoogle Scholar
  25. 25.
    L. Dupont, J. Galvan, J.P. Marcerou, J. Prost, Ferroelectrics 84, 315 (1988).Google Scholar
  26. 26.
    J.P. Bedel, J.C. Rouillon, J.P. Marcerou, H.T. Nguyen, M.F. Achard, Phys. Rev. E 69, 061702 (2004).CrossRefADSGoogle Scholar
  27. 27.
    J. Hatano, M. Harazaki, M. Sato, K. Iwauchi, S. Saito, Jpn. J. Appl. Phys. 32, 4344 (1993).CrossRefADSGoogle Scholar
  28. 28.
    M. Manai, A. Gharbi, S. Essid, M.F. Achard, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Ferroelectrics 343, 27 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Glogarovà, J. Pavel, Liq. Cryst. 6, 325 (1989).CrossRefGoogle Scholar
  30. 30.
    F. Ghoddoussi, M.A. Pantea, P.H. Keyes, R. Naik, P.P. Vaishnava, Phys. Rev. E 68, 051706 (2003).CrossRefADSGoogle Scholar
  31. 31.
    H. Orihara, Y. Naruse, M. Yagyu, A. Fajar, S. Uto, Phys. Rev. E 72, 040701(R) (2005).CrossRefADSGoogle Scholar
  32. 32.
    S. Essid, M. Manai, A. Gharbi, J.P. Marcerou, J.C. Rouillon, H.T. Nguyen, Liq. Cryst. 31, 1185 (2004).CrossRefGoogle Scholar
  33. 33.
    M.F. Achard, J.P. Bedel, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Eur. Phys. J. E 10, 129 (2003).CrossRefGoogle Scholar
  34. 34.
    H. Allouchi, M. Cotrait, M. Laguerre, J. Rouillon, J.P. Marcerou, H.T. Nguyen, Liq. Cryst. 25, 207 (1998).CrossRefGoogle Scholar
  35. 35.
    A.D.L. Chandani, N.M. Shtykov, V.P. Pavanov, A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E. 72, 041705 (2005).CrossRefADSGoogle Scholar
  36. 36.
    N.A. Clark, T. Bellini, R.F. Shao, D. Coleman, S. Bardon, D.R. Link, J.E. Maclennan, X.H. Chen, M.D. Wand, D.M. Walba, P. Rudquist, S.T. Lagerwall, Appl. Phys. Lett. 80, 4097 (2002). CrossRefADSGoogle Scholar
  37. 37.
    L. Landau, L. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, Oxford, 1984).Google Scholar
  38. 38.
    S. Garoff, R.B. Meyer, Phys. Rev. Lett. 38, 848 (1977).CrossRefADSGoogle Scholar
  39. 39.
    A. Défontaines, J. Prost, Phys. Rev. E 47, 1184 (1993).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • J. P. Marcerou
    • 1
  • H. T. Nguyen
    • 1
  • N. Bitri
    • 1
  • A. Gharbi
    • 1
  • S. Essid
    • 1
  • T. Soltani
    • 2
  1. 1.Centre de Recherches Paul PascalUniversité de Bordeaux IPessacFrance
  2. 2.Laboratoire de Physique de la Matière Molle Faculté des Sciences de TunisTunisTunisia

Personalised recommendations