Advertisement

The European Physical Journal E

, Volume 23, Issue 3, pp 237–245 | Cite as

Conformation of poly(L-lysine)-graft-poly(ethylene glycol) molecular brushes in aqueous solution studied by small-angle neutron scattering

Regular Article

Abstract.

Small-angle neutron scattering (SANS) has been employed for the analysis of conformations of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g -PEG) molecular bottle brushes in aqueous solutions. The degree of polymerisation of the PEG chains was systematically varied in order to unravel dependence of the conformational properties of the bottle brushes on the molecular weight of the grafted chains. The grafting density was kept constant and high enough to ensure strong overlap of the PEG chains. The scattering spectra were fitted on the basis of the model of an effective worm-like chain with the account of average radial distribution and local fluctuations of the PEG density in the bottle brush. The results of the fits indicate that molecular brushes retain weakly bent configuration on the length scale of the order of (or larger than) the brush thickness. This finding is in agreement with earlier simulation and recent theoretical results.

PACS.

61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling 82.35.Rs Polyelectrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Zhang, A.H.E. Muller, J. Polym. Sci. Part A: Polym. Chem. 43, 3461 (2005).CrossRefGoogle Scholar
  2. 2.
    C. Brink, E. Osterberg, K. Holmberg, F. Tiberg, Colloids Surf. 66, 149 (1992).CrossRefGoogle Scholar
  3. 3.
    J.M. Harris, Poly(ethylene glycol) Chemistry, Biotechnical and Biomedical Applications (Plenum Press, New York and London, 1992).Google Scholar
  4. 4.
    M. Amiji, K. Park, Biomaterials 13, 682 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Morra, J. Biomater. Sci.-Polym. Ed. 11, 547 (2000).CrossRefGoogle Scholar
  6. 6.
    S. Pasche, S.M. De Paul, J. Vörös, N.D. Spencer, M. Textor, Langmuir 19, 9216 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Lee, M. Müller, M. Ratoi-Salagean, J. Vörös, S. Pasche, S.M. De Paul, H.A. Spikes, M. Textor, N.D. Spencer, Tribol. Lett. 15, 231 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Müller, S. Lee, H.A. Spikes, N.D. Spencer, Tribol. Lett. 15, 395 (2003).MATHCrossRefGoogle Scholar
  9. 9.
    S. Pasche, M. Textor, L. Meagher, N.D. Spencer, H.J. Griesser, Langmuir 21, 6508 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher, A. Deffieux, A. Brulet, J.P. Cotton, Macromolecules 35, 8878 (2002).CrossRefGoogle Scholar
  11. 11.
    J.S. Pedersen, P. Schurtenberger, Macromolecules 29, 7602 (1996).CrossRefGoogle Scholar
  12. 12.
    G. Jerke, J.S. Pedersen, S.U. Egelhaaf, P. Schurtenberger, Phys. Rev. E 56, 5772 (1997).CrossRefADSGoogle Scholar
  13. 13.
    V.M. Garamus, J.S. Pedersen, H. Kawasaki, H. Maeda, Langmuir 16, 6431 (2000).CrossRefGoogle Scholar
  14. 14.
    L. Arleth, M. Bergstrom, J.S. Pedersen, Langmuir 18, 5343 (2002).CrossRefGoogle Scholar
  15. 15.
    L.M. Bergstrom, U.R.M. Kjellin, P.M. Claesson, I. Grillo, J. Phys. Chem. B 108, 1874 (2004).CrossRefGoogle Scholar
  16. 16.
    P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca and London, 1979).Google Scholar
  17. 17.
    O.V. Borisov, T.M. Birshtein, Y.B. Zhulina, Polym. Sci. USSR 29, 1552 (1987).CrossRefGoogle Scholar
  18. 18.
    T.M. Birshtein, O.V. Borisov, Y.B. Zhulina, A.R. Khokhlov, T.A. Yurasova, Polym. Sci. USSR 29, 1293 (1987).CrossRefGoogle Scholar
  19. 19.
    E.B. Zhulina, T.M. Birshtein, O.V. Borisov, Eur. Phys. J. E 20, 243 (2006).CrossRefGoogle Scholar
  20. 20.
    L. Feuz, F.A.M. Leermakers, M. Textor, O. Borisov, Macromolecules 38, 8891 (2005).CrossRefGoogle Scholar
  21. 21.
    G.H. Fredrickson, Macromolecules 26, 2825 (1993).CrossRefGoogle Scholar
  22. 22.
    M. Kotlarchyk, S.H. Chen, J. Chem. Phys. 79, 2461 (1983). CrossRefADSGoogle Scholar
  23. 23.
    O. Kratky, G. Porod, J. Colloid Sci. 4, 35 (1949).CrossRefGoogle Scholar
  24. 24.
    P. Debye, J. Phys. Colloid Chem. 51, 18 (1947).CrossRefGoogle Scholar
  25. 25.
    P. Strunz, K. Mortensen, S. Janssen, Phys. B Condens. Matter 350, E783 (2004).Google Scholar
  26. 26.
    W.E. Fischer, Phys. B Condens. Matter 234-236, 1202 (1997).Google Scholar
  27. 27.
    S. Cusack, J. Mol. Biol. 145, 541 (1981).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • L. Feuz
    • 1
  • P. Strunz
    • 2
  • T. Geue
    • 3
  • M. Textor
    • 1
  • O. Borisov
    • 4
    • 5
  1. 1.Laboratory for Surface Science and Technology, Department of MaterialsETH ZurichZurichSwitzerland
  2. 2.Academy of Sciences of the Czech RepublicNuclear Physics InstituteRezCzech Republic
  3. 3.Laboratory for Neutron ScatteringETH Zurich & Paul Scherrer InstitutVilligen PSISwitzerland
  4. 4.Institute of Macromolecular Compounds of the Russian Academy of SciencesSt. PetersburgRussia
  5. 5.UMR 5254 CNRSInstitut Pluridisciplinaire de Recherche sur l'Environnement et MatériauxPauFrance

Personalised recommendations