The European Physical Journal E

, Volume 21, Issue 4, pp 283–291 | Cite as

Influence of isotopic substitution on the diffusion and thermal diffusion coefficient of binary liquids

  • G. Wittko
  • W. Köhler
Regular Article

Abstract.

The mutual mass diffusion coefficient (D) and the thermal diffusion coefficient ( D T) of the liquids acetone, benzene, benzene-d 1, benzene-d 3, benzene-d 5, benzene-d 6, benzene- 13C6, n-hexane, toluene, 1, 2, 3, 4-tetrahydronaphtalene, isobutylbenzene, and 1, 6-dibromohexane in protonated and perdeuterated cyclohexane have been measured with a transient holographic grating technique at a temperature of 25 °C. The mass diffusion coefficient shows a pronounced concentration dependence. Perdeuteration of cyclohexane only leads to marginal changes of the mass diffusion coefficient. The Stokes-Einstein equation describes the limiting tracer diffusion coefficients well if the solute molecule is smaller than the solvent. It is not capable to describe the small isotope effect of a few percent. On the other hand, the isotope effect, which is independent of concentration, is in agreement with the Enskog theory, that does not provide the absolute value of the mass diffusion coefficient of the liquid mixtures. The thermal diffusion coefficient of all the binary mixtures shows a moderate and almost linear concentration dependence. Its isotope effect, which is the change of D T upon deuteration of cyclohexane, varies with mole fraction. The thermophoretic force acting on any tracer molecule in cyclohexane changes by the same amount when cyclohexane is perdeuterated, irrespective of the magnitude of the thermophoretic force before deuteration. This change of the thermophoretic force is equal but of opposite sign to the difference between the thermophoretic forces acting on cyclohexane and perdeuterated cyclohexane as tracers in any of the above liquids.

PACS.

66.10.Cb Diffusion and thermal diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).Google Scholar
  2. 2.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1995).Google Scholar
  3. 3.
    J.K.G. Dhont, J. Chem. Phys. 120, 1632 (2004).CrossRefADSGoogle Scholar
  4. 4.
    J.K.G. Dhont, J. Chem. Phys. 120, 1642 (2004).CrossRefADSGoogle Scholar
  5. 5.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E. 19, 59 (2006).CrossRefGoogle Scholar
  6. 6.
    R.K. Ghai, H. Ertl, F.A.L. Dullien, AIChE 19, 881 (1973).CrossRefGoogle Scholar
  7. 7.
    H. Ertl, R.K. Ghai, F.A.L. Dullien, AIChE 20, 1 (1974).CrossRefGoogle Scholar
  8. 8.
    D. Bosse, H.J. Bart, Ind. Eng. Chem. Res. 45, 1822 (2006).CrossRefGoogle Scholar
  9. 9.
    Y.D. Hsu, Y.P. Chen, Fluid Phase Equilibria 152, 149 (1998).CrossRefGoogle Scholar
  10. 10.
    Y.D. Hsu, M. Tang, Y.P. Chen, Fluid Phase Equilibria 173, 1 (2000).CrossRefGoogle Scholar
  11. 11.
    A.A. Shapiro, Physica A 320, 211 (2003).CrossRefADSGoogle Scholar
  12. 12.
    R. Haase, Z. Phys. 127, 1 (1949).Google Scholar
  13. 13.
    W.M. Rutherford, H.G. Drickamer, J. Chem. Phys. 22, 1157 (1954).CrossRefGoogle Scholar
  14. 14.
    E.L. Dougherty, H.G. Drickamer, J. Chem. Phys. 23, 295 (1955).CrossRefGoogle Scholar
  15. 15.
    E.L. Dougherty, H.G. Drickamer, J. Phys. Chem. 59, 443 (1955).CrossRefGoogle Scholar
  16. 16.
    L.J.T.M. Kempers, J. Chem. Phys. 90, 6541 (1989).CrossRefADSGoogle Scholar
  17. 17.
    L.J.T.M. Kempers, J. Chem. Phys. 115, 6330 (2001).CrossRefADSGoogle Scholar
  18. 18.
    K. Shukla, A. Firoozabadi, Ind. Eng. Chem. Res. 37, 3331 (1998).CrossRefGoogle Scholar
  19. 19.
    A.A. Shapiro, Physica A 332, 151 (2004).CrossRefADSGoogle Scholar
  20. 20.
    M.G. Gonzales-Bagnoli, A.A. Shapiro, E.H. Stenby, Philos. Mag. 83, 2171 (2003). CrossRefGoogle Scholar
  21. 21.
    S. Pan, C. Jiang, Y. Yan, M. Kawaji, M.Z. Saghir, J. Non-Equilib. Thermodyn. 31, 47 (2006).MATHCrossRefGoogle Scholar
  22. 22.
    D. Reith, F. Müller-Plathe, J. Chem. Phys. 112, 2436 (2000).CrossRefADSGoogle Scholar
  23. 23.
    G. Galliéro, B. Duguay, J.-P. Caltagirone, F. Montel, Fluid Phase Equilibria 208, 171 (2003).CrossRefGoogle Scholar
  24. 24.
    M. Zhang, F. Müller-Plathe, J. Chem. Phys. 123, 124502 (2005).CrossRefADSGoogle Scholar
  25. 25.
    J.M. Simon, D.K. Dysthe, A.H. Fuchs, B. Rousseau, Fluid Phase Equilibria 150-151, 151 (1998).Google Scholar
  26. 26.
    A. Perronace, C. Leppla, F. Leroy, B. Rousseau, S. Wiegand, J. Chem. Phys. 116, 3718 (2002).CrossRefADSGoogle Scholar
  27. 27.
    B. Rousseau, C. Nieto-Draghi, J. Bonet Avalos, Europhys. Lett. 67, 976 (2004).CrossRefADSGoogle Scholar
  28. 28.
    C. Nieto-Drahgi, J.B. Avalos, B. Rousseau, J. Chem. Phys. 122, 114503 (2005).CrossRefGoogle Scholar
  29. 29.
    C. Debuschewitz, W. Köhler, Phys. Rev. Lett. 87, 55901 (2001).CrossRefADSGoogle Scholar
  30. 30.
    G. Wittko, W. Köhler, J. Chem. Phys. 123, 014506 (2005).CrossRefADSGoogle Scholar
  31. 31.
    G. Wittko, W. Köhler, Philos. Mag. 83, 1973 (2003).CrossRefGoogle Scholar
  32. 32.
    J.K. Platten, M. Bou-Ali, P. Costesèque, J. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Philos. Mag. 83, 1965 (2003).CrossRefGoogle Scholar
  33. 33.
    A.Ž. Tasić, B.D. Djordjević, S.P. Šerbanović, D.K. Grozdanić, J. Chem. Eng. Data 26, 118 (1981).CrossRefGoogle Scholar
  34. 34.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J. Chem. Phys. 104, 6881 (1996).CrossRefADSGoogle Scholar
  35. 35.
    R.K. Ghai, F.A.L. Dullien, J. Phys. Chem. 78, 2283 (1974).CrossRefGoogle Scholar
  36. 36.
    M. Afzal Awan, J.H. Dymond, Int. J. Thermophys. 22, 679 (2001).CrossRefGoogle Scholar
  37. 37.
    W. Köhler, B. Müller, J. Chem. Phys. 103, 4367 (1995).CrossRefADSGoogle Scholar
  38. 38.
    J.C. Shieh, P.A. Lyons, J. Phys. Chem. 73, 3258 (1969).CrossRefGoogle Scholar
  39. 39.
    S.A. Sanni, C.J.D. Fell, H.P. Hutchison, J. Chem. Eng. Data 16, 424 (1971).CrossRefGoogle Scholar
  40. 40.
    S.A. Sanni, H.P. Hutchison, J. Chem. Eng. Data 18, 317 (1973).CrossRefGoogle Scholar
  41. 41.
    L. Rodwin, J.A. Harpst, P.A. Lyons, J. Phys. Chem. 69, 2783 (1965).Google Scholar
  42. 42.
    J.G. Albright, K. Aoyagi, J. Chem. Phys. 64, 81 (1976).CrossRefADSGoogle Scholar
  43. 43.
    O.O. Medvedev, A.A. Shapiro, Fluid Phase Equilibria 225, 13 (2004).CrossRefGoogle Scholar
  44. 44.
    R. Mills, K.R. Harris, Chem. Soc. Rev. 5, 215 (1976).CrossRefGoogle Scholar
  45. 45.
    G.D.J. Phillies, J. Phys. Chem. 85, 2838 (1981).CrossRefGoogle Scholar
  46. 46.
    F. Ould-Kaddour, D. Levesque, Phys. Rev. E 63, 011205 (2000).CrossRefADSGoogle Scholar
  47. 47.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1996).Google Scholar
  48. 48.
    J.A. Dixon, R.W. Schiessler, J. Phys. Chem. 58, 430 (1954).CrossRefGoogle Scholar
  49. 49.
    H.M. Jaeger, S.R. Nagel, Science 255, 1523 (1992).CrossRefADSGoogle Scholar
  50. 50.
    Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology - New Series, Vol. 8 (Springer, Berlin, 2002).Google Scholar
  51. 51.
    D.R. Lide (Editor), CRC Handbook of Chemistry and Physics 1997-1998, 78th ed. (Chemical Rubber Company, 1997).Google Scholar
  52. 52.
    J. Brandrup, E.H. Immergut (Editors), Polymer Handbook, 3rd ed. (Wiley, New York, 1989).Google Scholar
  53. 53.
    J.A. Dixon, R.W. Schiessler, J. Am. Chem. Soc. 76, 2197 (1954).CrossRefGoogle Scholar
  54. 54.
    R. Freer, J.N. Sherwood, J. Phys. Chem. 85, 102 (1981).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • G. Wittko
    • 1
  • W. Köhler
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations