The European Physical Journal E

, Volume 21, Issue 2, pp 145–152 | Cite as

Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point

  • E. H. C. Bromley
  • M. R. H. Krebs
  • A. M. Donald
Regular Article


Particulate gels are known to be formed by bovine β-lactoglobulin near the isoelectric point when partial unfolding is allowed to occur under heating. The aggregation process of the protein has been investigated within the context of a nucleation and growth process by preparing gels under precisely controlled thermal histories. This was achieved using a Differential Scanning Calorimeter (DSC) to provide controlled heating rates, and known final temperatures and incubation times. The resulting particulate gels were characterized by their particle size and polydispersity using Environmental Scanning Electron Microscopy (ESEM), which permits hydrated samples to be observed. Particle size was found to decrease with increasing final temperature, with the aggregation taking longer to reach completion for lower temperatures. Particle size was also found to decrease with increasing heating rate. This system could be modelled as evolving via nucleation and growth by taking into account the fact that the concentration of the aggregating species was varying as a function of temperature as well as time. The intrinsic tryptophan fluorescence as a function of temperature was used as a guide to the fraction of unfolded protein in solution, thereby permitting successful comparisons between the model predictions and the particle sizes to be made.-1


81.16.Fg Supramolecular and biochemical assembly 82.35.Pq Biopolymers, biopolymerization 87.14.Ee Proteins 87.15.Nn Properties of solutions; aggregation and crystallization of macromolecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Sawyer, G. Kontopidis, Biochim. Biophys. Acta 1482, 136 (2000).Google Scholar
  2. 2.
    A.C. Alting, R.J. Hamer, C.G. de Kruif, R.W. Visschers, J. Agric. Food Chem. 51, 3150 (2003).CrossRefGoogle Scholar
  3. 3.
    M.A. de la Fuente, H. Singh, Y. Hemar, Trends Food Sci. Technol. 13, 262 (2002).CrossRefGoogle Scholar
  4. 4.
    A.H. Clark, C.D. Lee-Tuffnell, Functional Properties of Food Macromolecules (Elsevier Applied Science Publishers, 1986).Google Scholar
  5. 5.
    M. Langton, A. Hermansson, Food Hydrocolloids 5, 523 (1992).Google Scholar
  6. 6.
    M. Langton, A. Hermansson, Food Hydrocolloids 10, 179 (1996).Google Scholar
  7. 7.
    M. Stading, M. Langton, A. Hermansson, Food Hydrocolloids 6, 455 (1992).CrossRefGoogle Scholar
  8. 8.
    M. Verheul, J.S. Pedersen, S.P. Roefs, K.G. de Kruif, Biopolymers 49, 11 (1999).CrossRefGoogle Scholar
  9. 9.
    T. Lefèvre, M. Subirade, Biopolymers 54, 578 (2000).CrossRefGoogle Scholar
  10. 10.
    W.G. Griffin, M.C.A. Griffin, S.R. Martin, J. Price, J. Chem. Soc. Faraday Trans. 89, 3395 (1993).CrossRefGoogle Scholar
  11. 11.
    S. Ikeda, V.J. Morris, Biomacromolecules 3, 382 (2002).CrossRefGoogle Scholar
  12. 12.
    W.S. Gosal, S.B. Ross-Murphy, Curr. Opin. Colloid Interface Sci. 5, 188 (2000).CrossRefGoogle Scholar
  13. 13.
    W.S. Gosal, A.H. Clark, P.D. Pudney, S.B. Ross-Murphy, Langmuir 18, 7174 (2002).CrossRefGoogle Scholar
  14. 14.
    E.H.C. Bromley, M.R.H. Krebs, A.M. Donald, Faraday Discuss. 128, 13 (2004).CrossRefGoogle Scholar
  15. 15.
    M. Pouzot, D. Durand, T. Nicolai, Macromolecules 37, 8703 (2004).CrossRefADSGoogle Scholar
  16. 16.
    L.M.C. Sagis, C. Veerman, R. Ganzevles, M. Ramaekers, S.G. Bolder, E. van der Linden, Food Hydrocolloids 16, 207 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Iametti, B. DeGregori, G. Vecchio, F. Bonomi, Eur. J. Biochem. 237, 106 (1996).CrossRefGoogle Scholar
  18. 18.
    S.P. Roefs, K.G. de Kruif, Eur. J. Biochem. 226, 883 (1994).CrossRefGoogle Scholar
  19. 19.
    A.C. Alting, R.J. Hamer, C.G. de Kruif, M. Paques, R.W. Visschers, Food Hydrocolloids 17, 496 (2003).CrossRefGoogle Scholar
  20. 20.
    Y. Surroca, J. Haverkamp, A.J. Heck, J. Chromatogr. A 970, 275 (2002).CrossRefGoogle Scholar
  21. 21.
    R. Bauer, R. Carrotta, C. Rischel, L. Ogendal, Biophys. J. 79, 1030 (2000).CrossRefADSGoogle Scholar
  22. 22.
    M. Verheul, S.P. Roefs, J. Agric. Food Chem. 46, 4909 (1998).CrossRefGoogle Scholar
  23. 23.
    M. Verheul, S. Roefs, J. Mellema, K.G. de Kruif, Langmuir 14, 2263 (1998).CrossRefGoogle Scholar
  24. 24.
    S. Ikeda, K. Nishinari, Biopolymers 59, 87 (2001). CrossRefGoogle Scholar
  25. 25.
    M. Stading, M. Langton, A.M. Hermansson, Food Hydrocolloids 7, 195 (1993).CrossRefGoogle Scholar
  26. 26.
    C. Olsson, M. Langton, A. Hermansson, Food Hydrocolloids 16, 477 (2002).CrossRefGoogle Scholar
  27. 27.
    H.H. de Jongh, T. Groneveld, J. de Groot, J. Dairy Sci. 84, 562 (2001).CrossRefGoogle Scholar
  28. 28.
    D. Hamada, S. Segawa, Y. Goto, Nat. Struct. Biol. 3, 868 (1996).CrossRefGoogle Scholar
  29. 29.
    T. Lefèvre, M. Subirade, Int. J. Food Sci. Technol. 34, 419 (1999).CrossRefGoogle Scholar
  30. 30.
    X.L. Qi, C. Holt, D. McNulty, D. Clarke, S. Brownlows, G.R. Jones, Biochem. J. 324, 341 (1997).Google Scholar
  31. 31.
    M. Paulsson, P.O. Hegg, H.B. Castberg, Thermochim. Acta 95, 435 (1985).CrossRefGoogle Scholar
  32. 32.
    A.M. Donald, Nat. Mater. 2, 511 (2003).CrossRefADSGoogle Scholar
  33. 33.
    R.E. Cameron, A.M. Donald, J. Microsc. 173, 227 (1994).Google Scholar
  34. 34.
    R.J. Green, I. Hopkinson, R.A.L. Jones, Langmuir 15, 5102 (1999).CrossRefGoogle Scholar
  35. 35.
    T. Vicsek, Fractal Growth Phenomena, 2nd edition (World Scientific, Singapore, 1992).Google Scholar
  36. 36.
    D. Fessas, S. Iametti, A. Schiraldi, F. Bonomi, Eur. J. Biochem. 268, 5439 (2001).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • E. H. C. Bromley
    • 1
  • M. R. H. Krebs
    • 1
  • A. M. Donald
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations