The European Physical Journal E

, Volume 21, Issue 2, pp 99–110 | Cite as

Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: A combined light scattering and ASAXS study

Regular Article

Abstract.

Anionic polyacrylate chains (NaPA) form precipitates if alkaline earth cations are added in stoichiometric amounts. Accordingly, precipitation thresholds were established for three different alkaline earth cations Ca2+, Sr2+ and Ba2+. Close to the precipitation threshold, the NaPA chains significantly decrease in size. This shrinking process was followed by means of combined static and dynamic light scattering. Intermediates were generated by varying the ratio [MCl2]/[NaPA] with M denoting the respective alkaline earth cation. All experiments were performed at an inert salt level of 0.01M NaCl. Similar coil-to-sphere transitions could be observed with all three alkaline earth cations Ca2+, Sr2+ and Ba2+. Based on these findings, supplementary conventional and anomalous small-angle X-ray scattering experiments using selected intermediates close to the precipitation threshold of SrPA were performed. The distribution of Sr counterions around the polyacrylate chains in aqueous solution provided the desired scattering contrast. Energy-dependent scattering experiments enabled successful separation of the pure-resonant terms, which solely stem from the counterions. The Sr2+ scattering roughly reflects the monomer distribution of the polyacrylate chains. Different ratios of the concentrations of [ SrCl2]/[NaPA] revealed dramatic changes in the scattering curves. The scattering curve at the lowest ratio indicated an almost coil-like behaviour, while at the higher ratios the scattering curves supported the model of highly contracted polymer chains. Most of X-ray scattering experiments on intermediate states revealed compact structural elements which were significantly smaller than the respective overall size of the NaPA particles.

PACS.

61.10.Eq X-ray scattering (including small-angle scattering) 82.35.Rs Polyelectrolytes 78.35.+c Brillouin and Rayleigh scattering; other light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Flory, J.E. Osterheld, J. Phys. Chem. 58, 653 (1954).CrossRefGoogle Scholar
  2. 2.
    P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).Google Scholar
  3. 3.
    A. Takahashi, S. Yamori, I. Kagawa, Kogyo Kagaku Zasshi 83, 11 (1962).Google Scholar
  4. 4.
    A. Takahashi, M. Nagasawa, J. Am. Chem. Soc. 86, 543 (1964).CrossRefGoogle Scholar
  5. 5.
    R. Schweins, J. Hollmann, K. Huber, Polymer 44, 7131 (2003).CrossRefGoogle Scholar
  6. 6.
    C.G. Sinn, R. Dimova, M. Antonietti, Macromoelcules 37, 3444 (2004).CrossRefGoogle Scholar
  7. 7.
    F. Molnar, J. Rieger, Langmuir 21, 786 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Ikegami, N. Imai, J. Polym. Sci. 56, 133 (1962).CrossRefGoogle Scholar
  9. 9.
    I.J. Michaeli, Polym. Sci. 48, 291 (1960).CrossRefGoogle Scholar
  10. 10.
    I. Pochard, A. Foissy, P. Couchot, Colloid Polym. Sci. 277, 818 (1999).CrossRefGoogle Scholar
  11. 11.
    I. Sabbagh, M. Delsanti, P. Lesieur, Eur. Phys. J. B 12, 253 (1999).CrossRefADSGoogle Scholar
  12. 12.
    K. Huber, J. Phys. Chem. 97, 9825 (1993).CrossRefGoogle Scholar
  13. 13.
    R. Schweins, K. Huber, Eur. Phys. J. E 5, 117 (2001).CrossRefGoogle Scholar
  14. 14.
    R. Schweins, P. Lindner, K. Huber, Macromolecules 36, 9564 (2003).CrossRefGoogle Scholar
  15. 15.
    H.J. Limbach, Ch. Holm, J. Phys. Chem. B 107, 8041 (2003).CrossRefGoogle Scholar
  16. 16.
    R. Schweins, K. Huber, Macromol. Symp. 211, 25 (2004).CrossRefGoogle Scholar
  17. 17.
    M.-J. Lee, M.M. Green, F. Mikes, H. Morawetz, Macromolecules 35, 4216 (2002).CrossRefGoogle Scholar
  18. 18.
    D. Baigl, M. Sferrazza, C.E. Williams, Europhys. Lett. 62, 110 (2003).CrossRefADSGoogle Scholar
  19. 19.
    W. Essafi, F. Lafuma, C.E. Williams, J. Phys. II 5, 1269 (1995).CrossRefGoogle Scholar
  20. 20.
    D. Baigl, D. Ober, A. Qu, A. Fery, C.E. Williams, Europhys. Lett. 62, 588 (2003).CrossRefADSGoogle Scholar
  21. 21.
    C. Heitz, M. Rawiso, J. Francois, Polymer 40, 1637 (1999).CrossRefGoogle Scholar
  22. 22.
    C. Heitz, J. Francois, Polymer 40, 3331 (1999).CrossRefGoogle Scholar
  23. 23.
    G. Goerigk, R. Schweins, K. Huber, M. Ballauf, Europhys. Lett. 66, 331 (2004). CrossRefADSGoogle Scholar
  24. 24.
    V.O. Aseyev, S.I. Klenin, H. Tenhu, I. Grillo, E. Geissler, Macromolecules 34, 3706 (2001).CrossRefGoogle Scholar
  25. 25.
    E. Dubois, F. Boué, Macromolecules 34, 3684 (2001).CrossRefGoogle Scholar
  26. 26.
    J. Combet, F. Isel, F. Rawiso, Macromolecules 38, 7456 (2005).CrossRefGoogle Scholar
  27. 27.
    S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc. 124, 10192 (2002).CrossRefGoogle Scholar
  28. 28.
    Y. Kantor, M. Kardar, Europhys. Lett. 27, 643 (1994).MathSciNetADSGoogle Scholar
  29. 29.
    A.V. Dobrynin, M. Rubinstein, S.P. Obukhov, Macromolecules 29, 2974 (1996).CrossRefGoogle Scholar
  30. 30.
    H. Schiessel, Macromolecules 32, 5673 (1999).CrossRefGoogle Scholar
  31. 31.
    S. Uyaver, Ch. Seidel, J. Phys. Chem. B 198, 18804 (2004).CrossRefGoogle Scholar
  32. 32.
    H.B. Stuhrmann, Adv. Polym. Sci. 67, 123 (1985).CrossRefGoogle Scholar
  33. 33.
    Q. de Robilliard, X. Guo, N. Dingenouts, M. Ballauff, G. Goerigk, Macromol. Symp. 164, 81 (2001).CrossRefGoogle Scholar
  34. 34.
    B. Guilleaume, M. Ballauff, G. Goerigk, M. Wittemann, M. Rehahn, Colloid Polym. Sci. 279, 829 (2001).CrossRefGoogle Scholar
  35. 35.
    B. Guilleaume, J. Blaul, M. Ballauff, M. Wittemann, M. Rehahn, G. Goerigk, Eur. Phys. J. E 8, 299 (2002).CrossRefGoogle Scholar
  36. 36.
    M. Patel, S. Rosenfeldt, M. Ballauff, N. Dingenouts, D. Pontoni, T. Narayanan, Phys. Chem. Chem. Phys. 6, 2962 (2004).CrossRefGoogle Scholar
  37. 37.
    N. Dingenouts, M. Patel, S. Rosenfeldt, D. Pontoni, M. Ballauff, T. Narayanan, Macromolecules 37, 8152 (2004).CrossRefGoogle Scholar
  38. 38.
    J. Bolze, M. Ballauff, T. Rische, D. Rudhardt, J. Meixner, Macromol. Chem. Phys. 205, 165 (2004).CrossRefGoogle Scholar
  39. 39.
    D.E. Koppel, J. Phys. Chem. 57, 4814 (1972).CrossRefGoogle Scholar
  40. 40.
    S.W. Provencher, Comput. Phys. Commun. 27, 213Google Scholar
  41. 41.
    H.-G. Haubold, K. Gruenhagen, M. Wagener, H. Jungbluth, H. Heer, A. Pfeil, H. Rongen, G. Brandenburg, R. Moeller, J. Matzerath, P. Hiller, H. Halling, Rev. Sci. Instrum. 60, 1943 (1989).CrossRefADSGoogle Scholar
  42. 42.
    D.T. Cromer, D. Liberman, J. Chem. Phys. 53, 1891 (1970).CrossRefADSGoogle Scholar
  43. 43.
    D.T. Cromer, D. Liberman, Acta Crystallogr. Sect. A 37, 267 (1981).CrossRefADSGoogle Scholar
  44. 44.
    G. Goerigk, D.L. Williamson, J. Appl. Phys. 99, 084309 (2006).CrossRefADSGoogle Scholar
  45. 45.
    O. Glatter, O. Kratky (Editors), Small Angle X-ray Scattering (Academic Press, London, 1982).Google Scholar
  46. 46.
    W. Burchard, Adv. Polym. Sci. 48, 1 (1983).Google Scholar
  47. 47.
    J.S. Vrentas, H.T. Liu, J.C. Duda, J. Polym. Sci., Polym. Phys. Ed. 18, 633 (1980).CrossRefGoogle Scholar
  48. 48.
    M. Schmidt, W. Burchard, Macromolecules 14, 210 (1981).CrossRefGoogle Scholar
  49. 49.
    K. Huber, W. Burchard, A.Z. Akcasu, Macromolecules 18, 2743 (1985).CrossRefMathSciNetGoogle Scholar
  50. 50.
    C. Wu, S. Zhou, Macromolecules 28, 5388Google Scholar
  51. 51.
    W. Burchard, M. Schmidt, W.H. Stockmayer, Macromolecules 13, 580Google Scholar
  52. 52.
    W. Burchard, M. Frank, E. Michel, Ber. Bunsenges. Phys. Chem. 100, 807 (1996).Google Scholar
  53. 53.
    G. Porod, Kolloid Z. 124, 83 (1951).CrossRefGoogle Scholar
  54. 54.
    Lord Rayleigh, Proc. R. Soc. London, Ser. A 90, 219 (1914).Google Scholar
  55. 55.
    B. Zimm, J. Chem. Phys. 16, 1099 (1978).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.LSS GroupInstitut Laue-LangevinGrenoble cedex 9France
  2. 2.Institut für FestkörperforschungForschungszentrum JülichJülichGermany
  3. 3.Fakultät für Naturwissenschaften, Department ChemieUniversität PaderbornPaderbornGermany

Personalised recommendations