Advertisement

The European Physical Journal E

, Volume 20, Issue 1, pp 19–27 | Cite as

Anisotropic surface melting in lyotropic cubic crystals

Part 2: Facet-by-facet melting at Ia3d/vapor interfaces
  • S. Leroy
  • J. Grenier
  • D. Rohe
  • C. Even
  • P. Pieranski
Regular Article

Abstract.

From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

PACS.

64.70.Md Transitions in liquid crystals 05.70.Np Interface and surface thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Grenier, T. Plötzing, D. Rohe, P. Pieranski, Eur. Phys. J. E 19, 223 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Otter, Z. Phys. 161, 539 (1961).CrossRefGoogle Scholar
  3. 3.
    U. Jeschkowski, E. Menzel, Surf. Sci. 15, 333 (1968).CrossRefGoogle Scholar
  4. 4.
    B. Pluis, A.W. Denier van der Gon, J.W. Franken, J.F. van der Veen, Phys. Rev. Lett. 59, 2678 (1987).CrossRefADSGoogle Scholar
  5. 5.
    J.C. Heyraud, J.J. Métois, J.M. Bermond, J. Cryst. Growth 98, 355 (1989).CrossRefGoogle Scholar
  6. 6.
    J.J. Métois, J.C. Heyraud, J. Phys. (Paris) 50, 3175 (1989).Google Scholar
  7. 7.
    P. Nozières, J. Phys. (Paris) 50, 2541 (1989).Google Scholar
  8. 8.
    P. Nozières, Shape and growth of crystals, in Solids Far from Equilibrium, edited by C. Godrèche (Cambridge University Press, 1992).Google Scholar
  9. 9.
    P. Pieranski, M. Bouchih, N. Ginestet, S. Popa-Nita, Eur. Phys. J. E 12, 239 (2003).CrossRefGoogle Scholar
  10. 10.
    See, for example, in Bicontinuous Liquid Crystals, edited by M.L. Lynch, P.T. Spicer (Taylor & Francis, 2005).Google Scholar
  11. 11.
    P. Pieranski, P. Sotta, D. Rohe, M. Imperor-Clerc, Phys. Rev. Lett. 84, 2409 (2000).CrossRefADSGoogle Scholar
  12. 12.
    P. Pieranski, L. Sittler, P. Sotta, M. Imperor-Clerc, Eur. Phys. J. E 5, 317 (2001).CrossRefGoogle Scholar
  13. 13.
    N. Cabrera, Surf. Sci. 2, 320 (1964).CrossRefGoogle Scholar
  14. 14.
    H. Qiu, M. Caffrey, Biomaterials 21, 223 (2000).CrossRefGoogle Scholar
  15. 15.
    J. Barauskas, T. Landh, Langmuir 19, 9562 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Plötzing, P. Pieranski, Eur. Phys. J. E 13, 179 (2004).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • S. Leroy
    • 1
  • J. Grenier
    • 1
  • D. Rohe
    • 1
  • C. Even
    • 1
  • P. Pieranski
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsay CedexFrance

Personalised recommendations