Advertisement

The European Physical Journal E

, Volume 19, Issue 3, pp 319–329 | Cite as

Dynamics of intramolecular recognition: Base-pairing in DNA/RNA near and far from equilibrium

  • R. Bundschuh
  • U. Gerland
Focus Point

Abstract.

The physics of the base-pairing interaction in DNA and RNA molecules plays a fundamental role in biology. Past experimental and theoretical research has led to a fairly complete and quantitative understanding of the equilibrium properties such as the different phases, the melting behavior, and the response to slow stretching. The non-equilibrium behavior is even richer than might be expected on the basis of thermodynamics. However, the non-equilibrium behavior is also far less understood. Here, we review different theoretical approaches to the study of base-pairing thermodynamics and kinetics, and illustrate the rich phenomenology with several examples that use these approaches.

PACS.

87.15.Cc Folding and sequence analysis 87.15.He Dynamics and conformational changes 87.14.Gg DNA, RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell (Garland, 2002).Google Scholar
  2. 2.
    J. Couzin, Science 298, 2296 (2002).CrossRefGoogle Scholar
  3. 3.
    T. Cech, Biosci. Rep. 10, 239 (1990).CrossRefGoogle Scholar
  4. 4.
    M. Morita, Y. Tanaka, T. Kodama, Y. Kyogoku, H. Yanagi, T. Yura, Genes Dev. 13, 655 (1999).Google Scholar
  5. 5.
    R. Poot, N. Tsareva, I. Boni, J. van Duin, Proc. Natl. Acad. Sci. U.S.A. 94, 10110 (1997).CrossRefADSGoogle Scholar
  6. 6.
    J.H. Nagel, C.W. Pleij, Biochimie 84, 913 (2002).CrossRefGoogle Scholar
  7. 7.
    R. Micura, C. Höbartner, ChemBioChem 4, 984 (2003).CrossRefGoogle Scholar
  8. 8.
    I. Tinoco, C. Bustamante, J. Mol. Biol. 293, 271 (1999).CrossRefGoogle Scholar
  9. 9.
    U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. E 58, 2386 (1998).CrossRefADSGoogle Scholar
  10. 10.
    J. Liphardt, B. Onoa, S.B. Smith, J. Tinoco, Ignacio, C. Bustamante, Science 292, 733 (2001).CrossRefADSGoogle Scholar
  11. 11.
    J. Mathe, H. Visram, V. Viasnoff, Y. Rabin, A. Meller, Biophys. J. 87, 3205 (2004).CrossRefGoogle Scholar
  12. 12.
    J. SantaLucia jr., Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).CrossRefGoogle Scholar
  13. 13.
    S. Freier, R. Kierzek, J. Jaeger, N. Sugimoto, M. Caruthers, T. Neilson, D. Turner, Proc. Natl. Acad. Sci. U.S.A. 83, 9373 (1986).ADSGoogle Scholar
  14. 14.
    D. Poland, H. Scheraga, J. Chem. Phys. 45, 1456 (1966).CrossRefADSGoogle Scholar
  15. 15.
    M.E. Fisher, J. Chem. Phys. 45, 1469 (2000).CrossRefADSGoogle Scholar
  16. 16.
    Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).CrossRefADSGoogle Scholar
  17. 17.
    D. Mathews, J. Sabina, M. Zuker, D. Turner, J. Mol. Biol. 288, 911 (1999).CrossRefGoogle Scholar
  18. 18.
    B. Zimm, J. Bragg, J. Chem. Phys. 28, 1246 (1958).CrossRefADSGoogle Scholar
  19. 19.
    N. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).CrossRefADSGoogle Scholar
  20. 20.
    B. Zimm, J. Chem. Phys. 33, 1349 (1960).CrossRefADSGoogle Scholar
  21. 21.
    M. Peyrard, A. Bishop, Phys. Rev. Lett. 62, 2755 (1989).CrossRefADSGoogle Scholar
  22. 22.
    N. Theodorakopoulos, T. Dauxois, M. Peyrard, Phys. Rev. Lett. 85, 6 (2000).CrossRefADSGoogle Scholar
  23. 23.
    E. Carlon, E. Orlandini, A. Stella, Phys. Rev. Lett. 88, 198101 (2002).CrossRefADSGoogle Scholar
  24. 24.
    M. Causo, B. Coluzzi, P. Grassberger, Physica A 314, 607 (2002).CrossRefADSGoogle Scholar
  25. 25.
    A. Hanke, R. Metzler, Phys. Rev. Lett. 90, 159801 (2003).CrossRefADSGoogle Scholar
  26. 26.
    Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 90, 159802 (2003).CrossRefADSGoogle Scholar
  27. 27.
    M. Azbel, Physica A 321, 571 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  28. 28.
    L.-H. Tang, H. Chaté, Phys. Rev. Lett. 86, 830 (2001).CrossRefADSGoogle Scholar
  29. 29.
    D. Cule, T. Hwa, Phys. Rev. Lett. 79, 2375 (1997).CrossRefADSGoogle Scholar
  30. 30.
    A. Campa, A. Giansanti, Phys. Rev. E 58, 3585 (1998).CrossRefADSGoogle Scholar
  31. 31.
    R. Blake, J. Bizzaro, J. Blake, G. Day, S. Delcourt, J. Knowles, K. Marx, J. SantaLucia jr., Bioinformatics 15, 370 (1999).CrossRefGoogle Scholar
  32. 32.
    R. Blossey, E. Carlon, Phys. Rev. E 68, 061911 (2003).CrossRefADSGoogle Scholar
  33. 33.
    T. Garel, H. Orland, Biopolymers 75, 453 (2004).CrossRefGoogle Scholar
  34. 34.
    S. Ares, N. Voulgarakis, K. Rasmussen, A. Bishop, Phys. Rev. Lett. 94, 035504 (2005).CrossRefADSGoogle Scholar
  35. 35.
    P. de Gennes, Biopolymers 6, 715 (1968).CrossRefGoogle Scholar
  36. 36.
    M. Waterman, Advances in Mathematics Supplementary Studies, Vol. 1 (Academic Press, New York, 1978) pp. 167-212.Google Scholar
  37. 37.
    R. Nussinov, A. Jacobson, Proc. Natl. Acad. Sci. U.S.A. 77, 6309 (1980).ADSGoogle Scholar
  38. 38.
    P.G. Higgs, Quart. Rev. Biophys. 33, 199 (2000).CrossRefGoogle Scholar
  39. 39.
    J. McCaskill, Biopolymers 29, 1105 (1990).CrossRefGoogle Scholar
  40. 40.
    M. Zuker, Nucleic Acids Res. 31, 3406 (2003).CrossRefGoogle Scholar
  41. 41.
    I.L. Hofacker, W. Fontana, P.F. Stadler, L. Bonhoeffer, M. Tacker, P. Schuster, Monatsh. Chem. 125, 167 (1994).CrossRefGoogle Scholar
  42. 42.
    Y. Ding, C. Chan, C. Lawrence, Nucleic Acids Res. 32, W135 (2004).Google Scholar
  43. 43.
    P.G. Higgs, Phys. Rev. Lett. 76, 704 (1996).CrossRefADSGoogle Scholar
  44. 44.
    S.-J. Chen, K.A. Dill, Proc. Natl. Acad. Sci. U.S.A. 97, 646 (2000).CrossRefADSGoogle Scholar
  45. 45.
    A. Pagnani, G. Parisi, F. Ricci-Tersenghi, Phys. Rev. Lett. 84, 2026 (2000).CrossRefADSGoogle Scholar
  46. 46.
    A.K. Hartmann, Phys. Rev. Lett. 86, 1382 (2001).CrossRefADSGoogle Scholar
  47. 47.
    A. Pagnani, G. Parisi, F. Ricci-Tersenghi, Phys. Rev. Lett. 86, 1383 (2001).CrossRefADSGoogle Scholar
  48. 48.
    F. Krzakala, M. Mézard, M. Müller, Europhys. Lett. 57, 752 (2002).CrossRefADSGoogle Scholar
  49. 49.
    E. Marinari, A. Pagnani, F. Ricci-Tersenghi, Phys. Rev. E 65, 041919 (2002).CrossRefADSGoogle Scholar
  50. 50.
    R. Bundschuh, T. Hwa, Europhys. Lett. 59, 903 (2002).CrossRefADSGoogle Scholar
  51. 51.
    R. Bundschuh, T. Hwa, Phys. Rev. E 65, 031903 (2002).CrossRefADSGoogle Scholar
  52. 52.
    M. Müller, Phys. Rev. E 67, 021914 (2003).CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    V.S. Pande, A.Y. Grosberg, T. Tanaka, Rev. Mod. Phys. 72, 259 (2000).CrossRefADSGoogle Scholar
  54. 54.
    R. Bundschuh, T. Hwa, Phys. Rev. Lett. 83, 1479 (1999).CrossRefADSGoogle Scholar
  55. 55.
    D. Moroz, T. Hwa, to be published.Google Scholar
  56. 56.
    E. Rivas, S. Eddy, J. Mol. Biol. 285, 2053 (1999).CrossRefGoogle Scholar
  57. 57.
    H. Isambert, E.D. Siggia, Proc. Natl. Acad. Sci. U.S.A. 97, 6515 (2000).CrossRefADSGoogle Scholar
  58. 58.
    H. Orland, A. Zee, Nucl. Phys. B 620, 456 (2002).CrossRefADSMATHMathSciNetGoogle Scholar
  59. 59.
    A. Kabakçioglu, A. Stella, Phys. Rev. E 70, 011802 (2004).CrossRefADSGoogle Scholar
  60. 60.
    R. Lyngsø, C. Pedersen, J. Comp. Biol. 7, 409 (2000).CrossRefGoogle Scholar
  61. 61.
    A. Xayaphoummine, T. Bucher, H. Isambert, Proc. Natl. Acad. Sci. U.S.A. 100, 15310 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  62. 62.
    B. Maier, D. Bensimon, V. Croquette, Proc. Natl. Acad. Sci. U.S.A. 97, 12002 (2000).CrossRefADSGoogle Scholar
  63. 63.
    A. Montanari, M. Mézard, Phys. Rev. Lett. 86, 2178 (2005).CrossRefADSGoogle Scholar
  64. 64.
    U. Gerland, R. Bundschuh, T. Hwa, Biophys. J. 81, 1324 (2001).Google Scholar
  65. 65.
    S. Cocco, J. Marko, R. Monasson, A. Sarkar, J. Yan, Eur. Phys. J. E 10, 249 (2003).CrossRefGoogle Scholar
  66. 66.
    M. Manosas, F. Ritort, Biophys. J. 88, 3224 (2000).CrossRefGoogle Scholar
  67. 67.
    M.-N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, V. Croquette, Phys. Rev. Lett. 89, 248102 (2002).CrossRefADSGoogle Scholar
  68. 68.
    M. Craig, D. Crothers, P. Doty, J. Mol. Biol. 62, 383 (1971).CrossRefGoogle Scholar
  69. 69.
    D. Pörschke, Biophys. Chem. 2, 83 (1974).CrossRefGoogle Scholar
  70. 70.
    G. Bonnet, O. Krichevsky, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 95, 8602 (1998).CrossRefADSGoogle Scholar
  71. 71.
    G. Altan-Bonnet, A. Libchaber, O. Krichevsky, Phys. Rev. Lett. 90, 138101 (2003).CrossRefADSGoogle Scholar
  72. 72.
    S. McKinney, A. Freeman, D. Lilley, T. Ha, Proc. Natl. Acad. Sci. U.S.A. 102, 5715 (2005).CrossRefADSGoogle Scholar
  73. 73.
    D. Thirumalai, S.A. Woodson, RNA 6, 790 (2000).CrossRefGoogle Scholar
  74. 74.
    X. Zhuang, L.E. Bartley, H.P. Babcock, R. Russell, T. Ha, D. Herschlag, S. Chu, Science 288, 2048 (2000).CrossRefADSGoogle Scholar
  75. 75.
    X. Zhuang, H. Kim, M.J.B. Pereira, H.P. Babcock, N.G. Walter, S. Chu, Science 296, 1473 (2002).CrossRefADSGoogle Scholar
  76. 76.
    B. Onoa, S. Dumont, J. Liphardt, S.B. Smith, J. Tinoco, Ignacio, C. Bustamante, Science 299, 1892 (2003).CrossRefADSGoogle Scholar
  77. 77.
    X. Zhuang, Annu. Rev. Biophys. Biomol. Struct. 34, 399 (2005).CrossRefMathSciNetGoogle Scholar
  78. 78.
    C. Flamm, W. Fontana, I.L. Hofacker, P. Schuster, RNA 6, 325 (2000).CrossRefGoogle Scholar
  79. 79.
    W. Zhang, S.-J. Chen, Proc. Natl. Acad. Sci. U.S.A. 99, 1931 (2002). CrossRefADSGoogle Scholar
  80. 80.
    S. Cocco, J. Marko, R. Monasson, Eur. Phys. J. E 10, 153 (2003).CrossRefGoogle Scholar
  81. 81.
    R. Bundschuh, U. Gerland, Coupled dynamics of RNA folding and nanopore translocation, q-bio/0508004 (2005).Google Scholar
  82. 82.
    A. Gultyaev, F. van Batenburg, C. Pleij, Nucleic Acids Res. 23, 3718 (1995).Google Scholar
  83. 83.
    A. Xayaphoummine, T. Bucher, F. Thalmann, H. Isambert, Nucleic Acids Res. 33, W605 (2005).Google Scholar
  84. 84.
    S. Harlepp, T. Marchal, J. Robert, J.-F. Leger, A. Xayaphoummine, H. Isambert, D. Chatenay, Eur. Phys. J. E 12, 605 (2003).CrossRefGoogle Scholar
  85. 85.
    R.A. Neher, U. Gerland, Phys. Rev. Lett. 93, 198102 (2004).CrossRefADSGoogle Scholar
  86. 86.
    P.-G. de Gennes, J. Chem. Phys. 55, 572 (1971).CrossRefADSGoogle Scholar
  87. 87.
    A. Meller, J. Phys. Condens. Matter 15, R581 (2003).Google Scholar
  88. 88.
    W. Vercoutere, S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, M. Akeson, Nat. Biotechnol. 19, 248 (2001).CrossRefGoogle Scholar
  89. 89.
    A.F. Sauer-Budge, J.A. Nyamwanda, D.K. Lubensky, D. Branton, Phys. Rev. Lett. 90, 238101 (2003).CrossRefADSGoogle Scholar
  90. 90.
    J. Mathe, A. Arinstein, Y. Rabin, A. Meller, Europhys. Lett. 73, 128 (2006).CrossRefADSGoogle Scholar
  91. 91.
    D.K. Lubensky, D.R. Nelson, Biophys. J. 77, 1824 (1999).CrossRefGoogle Scholar
  92. 92.
    U. Gerland, R. Bundschuh, T. Hwa, Phys. Biol. 1, 19 (2004).CrossRefADSGoogle Scholar
  93. 93.
    N.C. Seeman, Nature 421, 427 (2003).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA
  2. 2.Arnold-Sommerfeld Center for Theoretical Physics and Center for Nanoscience (CeNS)LMU MünchenMünchenGermany

Personalised recommendations