The European Physical Journal E

, Volume 19, Issue 3, pp 311–317 | Cite as

Probing DNA and RNA single molecules with a double optical tweezer

  • P. Mangeol
  • D. Côte
  • T. Bizebard
  • O. Legrand
  • U. Bockelmann
Focus Point


A double-tweezer setup is used to induce mechanical stress in systems of molecular biology. A double strand of DNA is first stretched and the data is compared to precedent experiments to check the experimental setup. Then a short foldable fragment of RNA is probed; the typical unfolding/refolding hysteresis behaviour of this kind of construction is shown and followed by a study of its elasticity and a comparison to a worm-like chain model. Eventually, we describe the unfolding of a larger RNA structure, which unfolds by multiple steps. We show that this unfolding is not reversible and that it presents numerous unfolding pathways.


87.15.-v Biomolecules: structure and physical properties 87.15.He Dynamics and conformational changes 87.64.-t Spectroscopic and microscopic techniques in biophysics and medical physics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122 (1992).ADSGoogle Scholar
  2. 2.
    S.B. Smith, Y.J. Cui, C. Bustamante, Science 271, 795 (1996).ADSGoogle Scholar
  3. 3.
    B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. U.S.A. 94, 11935 (1997).CrossRefADSGoogle Scholar
  4. 4.
    J.K. Steven, M.D. Wang, Phys. Rev. Lett. 91, 028103 (2003).CrossRefGoogle Scholar
  5. 5.
    U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. E 58, 2386 (1998).CrossRefADSGoogle Scholar
  6. 6.
    J. Liphardt, B. Onoa, S.B. Smith, I. Tinoco jr., C. Bustamante, Science 292, 733 (2001).CrossRefADSGoogle Scholar
  7. 7.
    S. Harlepp, T. Marchal, J. Robert, J.-F. Léger, A. Xayaphoummine, H. Isambert, D. Chatenay, Eur. Phys. J. E 12, 605 (2003).CrossRefGoogle Scholar
  8. 8.
    U. Bockelmann, Curr. Opin. Struct. Biol. 14, 368 (2004).CrossRefGoogle Scholar
  9. 9.
    K. Svoboda, S.M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).CrossRefGoogle Scholar
  10. 10.
    U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot, Biophys. J. 82, 1537 (2002).Google Scholar
  11. 11.
    M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Biophys. J. 72, 1335 (1997).CrossRefGoogle Scholar
  12. 12.
    T. Odijk, Macromolecules 28, 7016 (1995).CrossRefGoogle Scholar
  13. 13.
    W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1988).Google Scholar
  14. 14.
    O. Legrand, D. Côte, U. Bockelmann, Proc. SPIE, Vol. 5514 (Dholakia, Spalding, 2004) p. 160. Google Scholar
  15. 15.
    X. Zhuang, Annu. Rev. Biophys. Biomol. Struct. 34, 399 (2005).CrossRefMathSciNetGoogle Scholar
  16. 16.
    C. Bustamante, J.F. Marko, E.D. Siggia, S.B. Smith, Science 265, 1599 (1994).ADSGoogle Scholar
  17. 17.
    M.T. Record jr., C.F. Anderson, T.M. Lohman, Quart. Rev. Biophys. 11, 103 (1978).CrossRefGoogle Scholar
  18. 18.
    B. Onoa, S. Dumont, J. Liphardt, S.B. Smith, I. Tinoco jr., C. Bustamante, Science 299, 1892 (2003).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • P. Mangeol
    • 1
    • 2
  • D. Côte
    • 2
  • T. Bizebard
    • 3
  • O. Legrand
    • 2
  • U. Bockelmann
    • 1
    • 2
  1. 1.Laboratoire de Nanobiophysique, UMR CNRS 7083ESPCIParis Cedex 05France
  2. 2.Laboratoire Pierre AigrainEcole Normale SupérieureParis Cedex 05France
  3. 3.Institut de Biologie Physico-chimique, UPR CNRS 9073ParisFrance

Personalised recommendations