Advertisement

The European Physical Journal E

, Volume 16, Issue 3, pp 253–258 | Cite as

Evidence of the hexagonal columnar liquid-crystal phase of hard colloidal platelets by high-resolution SAXS

  • D. van der Beek
  • A. V. Petukhov
  • S. M. Oversteegen
  • G. J. Vroege
  • H. N. W. Lekkerkerker
Article

Abstract.

We report Small-Angle X-ray Scattering (SAXS) measurements of the columnar phase of hard colloidal gibbsite platelets. We have been able to create large oriented domains of the columnar phase both perpendicular and parallel to the sample wall, varying the volume fraction of platelets and adding non-adsorbing polymer to the dispersion. In conjunction with the increased resolution of the SAXS setup, this allowed a detailed analysis of the columnar phase, providing unambiguous evidence for the hexagonal nature of the phase.

PACS.

61.10.-i X-ray diffraction and scattering 61.30.-v Liquid crystals 82.70.-y Disperse systems; complex fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986).ADSGoogle Scholar
  2. 2.
    A. Imhof, D.J. Pine, Nature 389, 948 (1997).ADSGoogle Scholar
  3. 3.
    J.E.G.J. Wijnhoven, W.L. Vos, Science 281, 802 (1998).CrossRefADSGoogle Scholar
  4. 4.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel, Nature 405, 437 (2000).CrossRefPubMedADSGoogle Scholar
  5. 5.
    H. Zocher, Z. Anorg. Chem. 147, 91 (1925).Google Scholar
  6. 6.
    F.C. Bawden, N.W. Pirie, J.D. Bernal, I. Fankuchen, Nature 138, 1051 (1936).ADSGoogle Scholar
  7. 7.
    L. Onsager, Phys. Rev. 62, 558 (1942)Google Scholar
  8. 8.
    G. Oster, J. Gen. Physiol. 33, 445 (1950).Google Scholar
  9. 9.
    U. Kreibig, C. Wetter, Z. Naturforsch. C 35, 750 (1980).Google Scholar
  10. 10.
    J. Lapointe, D.A. Marvin, Mol. Cryst. Liq. Cryst. 19, 269 (1973).Google Scholar
  11. 11.
    F.P. Booy, A.G. Fowler, Int. J. Biol. Macromol. 7, 327 (1985).Google Scholar
  12. 12.
    Z. Dogic, S. Fraden, Phys. Rev. Lett. 78, 2417 (1997).ADSGoogle Scholar
  13. 13.
    Y. Maeda, S. Hachisu, Colloids Surf. 6, 1 (1983)Google Scholar
  14. 14.
    M. Wadati, A. Isihara, Mol. Cryst. Liq. Cryst. 17, 95 (1972).Google Scholar
  15. 15.
    M. Hosino, H. Nakano, H. Kimura, J. Phys. Soc. Jpn. 46, 1709 (1979)ADSGoogle Scholar
  16. 16.
    B. Mulder, Phys. Rev. A 35, 3095 (1987).ADSGoogle Scholar
  17. 17.
    X. Wen, R.B. Meyer, Phys. Rev. Lett. 59, 1325 (1987).ADSGoogle Scholar
  18. 18.
    A. Poniewierski, R. Holyst, Phys. Rev. Lett. 61, 2461 (1988).ADSGoogle Scholar
  19. 19.
    A. Stroobants, H.N.W. Lekkerkerker, D. Frenkel, Phys. Rev. Lett. 57, 1452 (1986)ADSGoogle Scholar
  20. 20.
    D. Frenkel, H.N.W. Lekkerkerker, A. Stroobants, Nature 332, 822 (1988).ADSGoogle Scholar
  21. 21.
    I. Langmuir, J. Chem. Phys. 6, 873 (1938).ADSGoogle Scholar
  22. 22.
    A. Mourchid, A. Delville, J. Lambard, E. Lécolier, P. Levitz, Langmuir 11, 1942 (1995).Google Scholar
  23. 23.
    M. Kroon, G.H. Wegdam, R. Sprik, Phys. Rev. E 54, 6541 (1996).ADSGoogle Scholar
  24. 24.
    A. Mourchid, E. Lécolier, H. Van Damme, P. Levitz, Langmuir 14, 4718 (1998).Google Scholar
  25. 25.
    P. Levitz, E. Lécolier, A. Mourchid, A. Delville, S. Lyonnard, Europhys. Lett. 49, 672 (2000).ADSGoogle Scholar
  26. 26.
    J.C.P. Gabriel, C. Sanchez, P. Davidson, J. Phys. Chem. 100, 11139 (1996).Google Scholar
  27. 27.
    H. van Olphen, J. Colloid Interface Sci. 19, 313 (1964).Google Scholar
  28. 28.
    E. Lécolier, A. Mourchid, P. Levitz, Prog. Colloid Polym. Sci. 110, 16 (1998).CrossRefGoogle Scholar
  29. 29.
    P.F. Luckham, S. Rossi, Adv. Colloid Interface Sci. 89, 43 (1999).Google Scholar
  30. 30.
    J.D.F. Ramsay, S.W. Swanton, J. Bunce, J. Chem. Soc. Faraday Trans. 86, 3919 (1990).Google Scholar
  31. 31.
    J.D.F. Ramsay, P. Lindner, J. Chem. Soc. Faraday Trans. 89, 4207 (1993).Google Scholar
  32. 32.
    F. Pignon, J.M. Piau, A. Magnin, Phys. Rev. Lett. 76, 4857 (1996).ADSGoogle Scholar
  33. 33.
    B.J. Lemaire, P. Panine, J.C.P. Gabriel, P. Davidson, Europhys. Lett. 59, 55 (2002).ADSGoogle Scholar
  34. 34.
    F.M. van der Kooij, H.N.W. Lekkerkerker, J. Phys. Chem. B 102, 7829 (1998).Google Scholar
  35. 35.
    D. van der Beek, H.N.W. Lekkerkerker, Europhys. Lett. 61, 702 (2003).CrossRefADSGoogle Scholar
  36. 36.
    D. Frenkel, R. Eppenga, Phys. Rev. Lett. 49, 1089 (1982).ADSGoogle Scholar
  37. 37.
    J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992).ADSGoogle Scholar
  38. 38.
    S.-D. Zhang, P.A. Reynolds, J.S. van Duijneveldt, J. Chem. Phys. 117, 9947 (2002).ADSGoogle Scholar
  39. 39.
    F.M. van der Kooij, K. Kassapidou, H.N.W. Lekkerkerker, Nature 406, 868 (2000).ADSGoogle Scholar
  40. 40.
    A.B.D. Brown, S.M. Clarke, A.R. Rennie, Langmuir 14, 3129 (1998).Google Scholar
  41. 41.
    D. van der Beek, H.N.W. Lekkerkerker, Langmuir 20, 8582 (2004). Google Scholar
  42. 42.
    J.L. Barrat, J.P. Hansen, J. Phys. (Paris) 46, 1547 (1986).Google Scholar
  43. 43.
    P.N. Pusey, J. Phys. (Paris) 48, 709 (1987).Google Scholar
  44. 44.
    R. McRae, A.D.J. Haymet, J. Chem. Phys. 88, 1114 (1988).ADSGoogle Scholar
  45. 45.
    P.N. Pusey, in Liquids, Freezing and Glass Transition, Les Houches Session 51, NATO Advanced Study Institute, Series B: Physics, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991) pp. 763.Google Scholar
  46. 46.
    P.G. Bolhuis, D.A. Kofke, Phys. Rev. E 54, 634 (1996).ADSGoogle Scholar
  47. 47.
    J. Torbet, G. Maret, J. Mol. Biol. 134, 843 (1979).Google Scholar
  48. 48.
    E. Senechal, G. Maret, K. Dransfeld, Int. J. Biol. Macromol. 2, 256 (1980).Google Scholar
  49. 49.
    J. Torbet, J.M. Freyssinet, G. Hudry-Clergeon, Nature 289, 91 (1981).ADSGoogle Scholar
  50. 50.
    J.M. Freyssinet, J. Torbet, G. Hudry-Clergeon, G. Maret, Proc. Natl. Acad. Sci. USA 80, 1616 (1983).ADSGoogle Scholar
  51. 51.
    R. Oldenbourg, X. Wen, R.B. Meyer, D.L.D. Caspar, Phys. Rev. Lett. 61, 1851 (1988).ADSGoogle Scholar
  52. 52.
    J. Gregory, K.C. Holmes, J. Mol. Biol. 13, 796 (1965).CrossRefGoogle Scholar
  53. 53.
    M. Impéror-Clerc, P. Davidson, Eur. Phys. J. B 9, 93 (1999).ADSGoogle Scholar
  54. 54.
    A.B.D. Brown, A.R. Rennie, Phys. Rev. E 62, 851 (2000).ADSGoogle Scholar
  55. 55.
    A.V. Petukhov, D.G.A.L. Aarts, I.P. Dolbnya, E.H.A. de Hoog, K. Kassapidou, G.J. Vroege, W. Bras, H.N.W. Lekkerkerker, Phys. Rev. Lett. 88, 208301 (2002).ADSGoogle Scholar
  56. 56.
    A.V. Petukhov, I.P. Dolbnya, D.G.A.L. Aarts, G.J. Vroege, H.N.W. Lekkerkerker, Phys. Rev. Lett. 90, 028304 (2003).ADSGoogle Scholar
  57. 57.
    A.V. Petukhov, I.P. Dolbnya, D.G.A.L. Aarts, G.J. Vroege, Phys. Rev. E 69, 031405 (2004).ADSGoogle Scholar
  58. 58.
    A.M. Wierenga, T.A.J. Lenstra, A.P. Philipse, Colloids Surf. A 134, 359 (1998).Google Scholar
  59. 59.
    F.M. van der Kooij, M. Vogel, H.N.W. Lekkerkerker, Phys. Rev. E 62, 5397 (2000).ADSGoogle Scholar
  60. 60.
    F.M. van der Kooij, H.N.W. Lekkerkerker, Langmuir 16, 10144 (2000).Google Scholar
  61. 61.
    D.A. Kofke, P.G. Bolhuis, Phys. Rev. E 59, 618 (1999).ADSGoogle Scholar
  62. 62.
    S.R. Williams, I.K. Snook, W. van Megen, Phys. Rev. E 64, 021506 (2001).ADSGoogle Scholar
  63. 63.
    N.B. Wilding, P. Sollich, Europhys. Lett. 67, 219 (2004).ADSGoogle Scholar
  64. 64.
    M.A. Bates, D. Frenkel, J. Chem. Phys. 110, 6553 (1999).ADSGoogle Scholar
  65. 65.
    F.M. van der Kooij, H.N.W. Lekkerkerker, Phys. Rev. Lett. 84, 781 (2000).ADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • D. van der Beek
    • 1
  • A. V. Petukhov
    • 1
  • S. M. Oversteegen
    • 1
  • G. J. Vroege
    • 1
  • H. N. W. Lekkerkerker
    • 1
  1. 1.Van ‘t Hoff Laboratory for Physical and Colloid ChemistryUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations