The European Physical Journal E

, Volume 15, Issue 2, pp 159–165 | Cite as

Behavior of adhesive boundary lubricated surfaces under shear: Effect of grafted diblock copolymers



The shear behavior and the normal interaction between mica surfaces covered by surfactant or surfactant-polymer mixtures were studied with a Surface Forces Apparatus (SFA) nanotribometer. If the surfaces are compressed while fully immersed in an aqueous surfactant solution that adsorbs in the form of flat bilayers, hemifusion can be induced. When the hemifused surfaces are subject to shear, at least five different dynamic regimes can be recognized. The general behavior may be described by a model based on the kinetics of formation and rupture of adhesive bonds between the shearing surfaces, with an additional viscous term. Once the adsorbed surfactant layer is decorated with physigrafted copolymers, the number of sliding regimes may be reduced to only one, in which the shear stress increases sublinearly with the driving velocity. The adhesion energy and the resistance to hemifusion of the adsorbed surfactant-polymer layers are also strongly modified as the grafting density increases.


Surfactant Shear Stress Surfactant Solution Diblock Copolymer Adhesive Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Richetti, C. Drummond, J. Israelachvili, M. In, R. Zana, Europhys. Lett. 55, 653 (2001).CrossRefGoogle Scholar
  2. 2.
    C. Drummond, J. Israelachvili, P. Richetti, Phys. Rev. E 67, 066110 (2003).CrossRefGoogle Scholar
  3. 3.
    R.M. Pashley, J.N. Israelachvili, Colloids Surf. 2, 169 (1981).CrossRefGoogle Scholar
  4. 4.
    J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, 1992).Google Scholar
  5. 5.
    C.A. Helm, J.N. Israelachvili, P.M. McGuiggan, Biochemistry 31, 1794 (1992).PubMedGoogle Scholar
  6. 6.
    A. Schallamach, Wear 6, 375 (1963); 17, 301 (1971).CrossRefGoogle Scholar
  7. 7.
    Y.B. Chernyak, A.I. Leonov, Wear 108, 105 (1986).CrossRefGoogle Scholar
  8. 8.
    C. Robelin, F.P. Duval, P. Richetti, G.G. Warr, Langmuir 18, 1634 (2002).CrossRefGoogle Scholar
  9. 9.
    M. In, in Reactions and Synthesis in Surfactant Systems, Surfactant Series, edited by J. Tetxer (M. Dekker Inc., 2001) pp. 59-110.Google Scholar
  10. 10.
    R. Zana, H. Levy, D. Papoutsi, G. Beinert, Langmuir 11, 3694 (1995).Google Scholar
  11. 11.
    A. Homola, J.N. Israelachvili, M.L. Gee, P. McGuiggan, J. Tribol. 111, 675 (1989).Google Scholar
  12. 12.
    J.N. Israelachvili, J. Colloid Interface Sci. 44, 259 (1973).CrossRefGoogle Scholar
  13. 13.
    G. Luengo, F.-J. Schmitt, R. Hill, J. Israelachvili, Macromolecules 30, 2482 (1997).CrossRefGoogle Scholar
  14. 14.
    A. Blom, G. Warr, private communication.Google Scholar
  15. 15.
    U. Raviv, J. Frey, R. Sak, P. Laurat, R. Tadmor, J. Klein, Langmuir 18, 7482 (2002).CrossRefGoogle Scholar
  16. 16.
    C.A. Helm, J.N. Israelachvili, P.M. McGuiggan, Science 246, 919 (1989).Google Scholar
  17. 17.
    E. Barthel, Colloids Surf. A 149, 99 (1999).CrossRefGoogle Scholar
  18. 18.
    W.-H. Hu, G.A. Carson, S. Granick, Phys. Rev. Lett. 66, 2758 (1991).CrossRefGoogle Scholar
  19. 19.
    S. Yamada, Langmuir 19, 7399 (2003).CrossRefGoogle Scholar
  20. 20.
    L. Bureau, Léger, L., unpublished (2003).Google Scholar
  21. 21.
    A. Subbotin, A. Semenov, E. Manias, G. Hadziioannou, G. Brinke, Macromolecules 28, 3898 (1995).Google Scholar
  22. 22.
    J.N. Bright, D.R. Williams, Langmuir 15, 3836 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Centre de Recherche Paul PascalCNRS-Université de Bordeaux 1PessacFrance
  2. 2.Groupe Dynamique des Phases CondenséesCNRS-Université de Montpellier IIMontpellierFrance

Personalised recommendations