Advertisement

The European Physical Journal E

, Volume 14, Issue 3, pp 211–239 | Cite as

DNA renaturation at the water-phenol interface

  • A. Goldar
  • J.-L. Sikorav
Article

Abstract.

We study the renaturation of complementary single-stranded DNAs in a water-phenol two-phase system, with or without shaking. In very dilute solutions, each single-stranded DNA is strongly adsorbed at the interface at high salt concentrations. The adsorption of the single-stranded DNA is specific to phenol and relies on stacking and hydrogen bonding. We establish the interfacial nature of DNA renaturation at high salt, either with vigorous shaking (in which case the reaction is known as the Phenol Emulsion Reassociation Technique or PERT) or without. In the absence of shaking, the renaturation involves a surface diffusion of the single-stranded DNA chains. A comparison of PERT with other known renaturation reactions shows that PERT is the most efficient one and reveals similarities between PERT and the renaturation performed by single-stranded nucleic acid binding proteins. The most efficient renaturation reactions (either with PERT or in the presence of condensing agents) occur in heterogeneous systems, in contrast with standard thermal renaturation, which takes place in the bulk of a homogeneous phase. This work highlights the importance of aromaticity in molecular biology. Our results lead to a better understanding of the partitioning of nucleic acids, and should help to design improved extraction procedures for damaged nucleic acids. We present arguments in favor of interfacial scenarios involving phenol in prebiotic chemistry.

Keywords

High Salt Concentration Acid Binding Protein Nucleic Acid Binding Interfacial Nature Prebiotic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Kohne, S.A. Levison, M.J. Byers, Biochemistry 16, 5329 (1977).Google Scholar
  2. 2.
    R. Wieder, J.G. Wetmur, Biopolymers 21, 665 (1982).Google Scholar
  3. 3.
    J.-L. Sikorav, G.M. Church, J. Mol. Biol. 222, 1085 (1991).Google Scholar
  4. 4.
    L.M. Kunkel et al. , Proc. Natl. Acad. Sci. U.S.A. 82, 4778 (1985).Google Scholar
  5. 5.
    S.A. Chow, C.M. Radding, Proc. Natl. Acad. Sci. U.S.A. 82, 5646 (1985).Google Scholar
  6. 6.
    G. Vesnaver, K.J. Breslauer, Proc. Natl. Acad. Sci. U.S.A. 88, 3569 (1991).Google Scholar
  7. 7.
    J.A. Holbrook et al. , Biochemistry 38, 8409 (1999).CrossRefGoogle Scholar
  8. 8.
    I. Chaperon, J.-L. Sikorav, Biopolymers 46, 195 (1998).CrossRefGoogle Scholar
  9. 9.
    W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).Google Scholar
  10. 10.
    L. Levine, J.A. Gordon, W.P. Jencks, Biochemistry 2, 168 (1963).MATHGoogle Scholar
  11. 11.
    P.O.P. Ts’o, G.K. Helmkamp, C. Sander, Proc. Natl. Acad. Sci. U.S.A. 48, 686 (1962).Google Scholar
  12. 12.
    F. Helmer, K. Kiehs, C. Hansch, Biochemistry 7, 2858 (1968).Google Scholar
  13. 13.
    P.O.P. Ts’o, I.S. Melvin, A.C. Olson, J. Am. Chem. Soc. 85, 1289 (1963).Google Scholar
  14. 14.
    P.O.P. Ts’o, in Basic Principles in Nucleic Acid Chemistry, edited by P.O.P. Ts’o, Vol. 1 (Academic Press, New York, 1974) p. 453.Google Scholar
  15. 15.
    R.C. Davis, I. Tinoco jr., Biopolymers 6, 223 (1968).Google Scholar
  16. 16.
    P.H. von Hippel, T. Schleich, in Structure and Stability of Biological Macromolecules, edited by S.N. Timasheff, G.D. Fasman (Marcel Dekker, Inc., New York, 1969) p. 417.Google Scholar
  17. 17.
    T.T. Herskovits, J.P. Harrington, Biochemistry 11, 4800 (1972).Google Scholar
  18. 18.
    M. Leng et al. , Biochimie 56, 887 (1974).Google Scholar
  19. 19.
    J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303 (1997).CrossRefGoogle Scholar
  20. 20.
    J. Marmur, P. Doty, J. Mol. Biol. 3, 585 (1961).Google Scholar
  21. 21.
    D. Pörschke, M. Eigen, J. Mol. Biol. 62, 361 (1971).Google Scholar
  22. 22.
    M.E. Craig, D.M. Crothers, P. Doty, J. Mol. Biol. 62, 383 (1971).Google Scholar
  23. 23.
    F.W. Studier, J. Mol. Biol. 41, 199 (1969).Google Scholar
  24. 24.
    J.G. Wetmur, N. Davidson, J. Mol. Biol. 31, 349 (1968).Google Scholar
  25. 25.
    B.W. Pontius, P. Berg, Proc. Natl. Acad. Sci. U.S.A. 88, 8237 (1991).Google Scholar
  26. 26.
    B.M. Alberts, L. Frey, Nature 227, 1313 (1970).Google Scholar
  27. 27.
    G.M. Weinstock, K. McEntee, I.R. Lehman, Proc. Natl. Acad. Sci. U.S.A. 76, 126 (1979).Google Scholar
  28. 28.
    C. Christiansen, R.L. Baldwin, J. Mol. Biol. 115, 441 (1977).Google Scholar
  29. 29.
    J.E. Rothman, R.D. Kornberg, Nature 322, 209 (1986).Google Scholar
  30. 30.
    S.C. Kowalczykowski, A.K. Eggleston, Annu. Rev. Biochem. 63, 991 (1994).Google Scholar
  31. 31.
    T.M. Lohman, M.E. Ferrari, Annu. Rev. Biochem. 63, 527 (1994).Google Scholar
  32. 32.
    Z. Tsuchihashi, P.O. Brown, J. Virol. 68, 5863 (1994).Google Scholar
  33. 33.
    D. Herschlag, J. Biol. Chem. 270, 20871 (1995).Google Scholar
  34. 34.
    C. Gabus et al. , J. Biol. Chem. 276, 19301 (2001).CrossRefGoogle Scholar
  35. 35.
    E.A. DiMarzio, M. Bishop, Biopolymers 13, 2331 (1974).Google Scholar
  36. 36.
    G.A. Carri, M. Muthukumar, Phys. Rev. Lett. 82, 5405 (1999).Google Scholar
  37. 37.
    M.G. Sevag, D.B. Lackman, J. Smolens, J. Biol. Chem. 124, 425 (1938).Google Scholar
  38. 38.
    A. Gierer, G. Schramm, Nature 177, 702 (1956).Google Scholar
  39. 39.
    K.S. Kirby, Biochem. J. 64, 405 (1956).Google Scholar
  40. 40.
    K.S. Kirby, Biochem. J. 66, 495 (1957).Google Scholar
  41. 41.
    R.L. Sinsheimer, J. Mol. Biol. 1, 43 (1959).Google Scholar
  42. 42.
    J. Marmur, J. Mol. Biol. 3, 208 (1961).Google Scholar
  43. 43.
    J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning. A Laboratory Manual, second ed. (Cold Spring Harbor Laboratory Press, New York, 1989).Google Scholar
  44. 44.
    P.-Å. Albertsson, Partition of Cell Particles and Macromolecules (John Wiley and Sons, New York, 1960).Google Scholar
  45. 45.
    H. Walter, D.E. Brooks, D. Fisher, Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology (Academic Press, Inc., Orlando, 1985).Google Scholar
  46. 46.
    A. Pusztai, Biochem. J. 99, 93 (1966).Google Scholar
  47. 47.
    H. Saito, K.-I. Mura, Biochim. Biophys. Acta 72, 619 (1963).CrossRefGoogle Scholar
  48. 48.
    H.R. Massie, B.H. Zimm, Proc. Natl. Acad. Sci. U.S.A. 54, 1641 (1965).Google Scholar
  49. 49.
    M. Zasloff, G.D. Ginder, G. Felsenfeld, Nucleic Acids Res. 5, 1139 (1978).Google Scholar
  50. 50.
    D. Müller et al. , Biochim. Biophys. Acta 740, 1 (1983).Google Scholar
  51. 51.
    R.P. Perry et al. , Biochim. Biophys. Acta 262, 220 (1972).Google Scholar
  52. 52.
    M. Piechowska, D. Shugar, Acta Biochim. Pol. 10, 263 (1963).Google Scholar
  53. 53.
    M. Piechowska, D. Shugar, Acta Biochim. Pol. 12, 11 (1965).Google Scholar
  54. 54.
    T.I. Tikhonenko, G.A. Perevertailo, S.P. Vorotilo, Biochemistry (Moscow) 31, 197 (1966).Google Scholar
  55. 55.
    D.M. Skinner, L.L. Triplett, Biochem. Biophys. Res. Co. 28, 892 (1967).Google Scholar
  56. 56.
    M.P. Robertson, S.L. Miller, Science 268, 702 (1995).Google Scholar
  57. 57.
    W. Gilbert, Nature 319, 618 (1986).Google Scholar
  58. 58.
    G.F. Joyce, Nature 338, 217 (1989).CrossRefGoogle Scholar
  59. 59.
    G. Joyce, Nature 418, 214 (2002).CrossRefGoogle Scholar
  60. 60.
    J.D. Bernal, The Physical Basis of Life (Routledge and Kegan Paul, London, 1951).Google Scholar
  61. 61.
    N.R. Pace, Cell 65, 531 (1991).Google Scholar
  62. 62.
    J.P. Ferris et al. , Nature 381, 59 (1996).CrossRefGoogle Scholar
  63. 63.
    S.J. Sowerby et al. , Proc. Natl. Acad. Sci. U.S.A. 98, 820 (2001).CrossRefGoogle Scholar
  64. 64.
    G. Zubay, Origins of Life on the Earth and in the Cosmos, 2nd ed. (Academic Press, San Diego, 2000).Google Scholar
  65. 65.
    L. Onsager, in Quantum Statistical Mechanics in the Natural Sciences, edited by S.L. Mintz, S.M. Widmayer (Plenum Press, New York, Coral Gables, 1974) p. 1.Google Scholar
  66. 66.
    F. Sanger et al. , J. Mol. Biol. 125, 225 (1978).Google Scholar
  67. 67.
    A.F.H. Ward, L. Tordai, J. Chem. Phys. 14, 453 (1946).Google Scholar
  68. 68.
    J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, 1975).Google Scholar
  69. 69.
    D. Lang, P. Coates, J. Mol. Biol. 36, 137 (1968).Google Scholar
  70. 70.
    C.N. Hinshelwood, The Kinetics of Chemical Change (The Clarendon Press, Oxford, 1940).Google Scholar
  71. 71.
    A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988).Google Scholar
  72. 72.
    J.C. Jaeger, Philos. Mag. 32, 324 (1941).MathSciNetMATHGoogle Scholar
  73. 73.
    N.Y. Ölçer, Q. Appl. Math. 26, 335 (1968).Google Scholar
  74. 74.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).Google Scholar
  75. 75.
    H.C. Berg, E.M. Purcell, Biophys. J. 20, 193 (1977).MATHGoogle Scholar
  76. 76.
    V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962).Google Scholar
  77. 77.
    J. Timmermans, Z. Phys. Chem. 58, 129 (1907).Google Scholar
  78. 78.
    E. von Schürmann, R. Diederichs, Ber. Bunseng. Ges. Phys. Chem. 68, 434 (1964).Google Scholar
  79. 79.
    A.E. Hill, W.M. Malisoff, J. Am. Chem. Soc. 48, 918 (1926).Google Scholar
  80. 80.
    A.N. Campell, A.J.R. Campell, J. Am. Chem. Soc. 59, 2481 (1937).Google Scholar
  81. 81.
    Z.X. Li et al. , J. Phys. Chem. B 102 (1998).Google Scholar
  82. 82.
    F.H. Rhodes, A.L. Markley, J. Phys. Chem. 25, 527 (1921).Google Scholar
  83. 83.
    B. von Meuthen, M. Stackelberg, Z. Elektrochem. 64, 387 (1960).Google Scholar
  84. 84.
    J. Duckett, W.H. Patterson, J. Phys. Chem. 29, 259 (1925).Google Scholar
  85. 85.
    J.H. Carrington, L.R. Hickson, W.H. Patterson, J. Chem. Soc. 127, 2544 (1925).CrossRefGoogle Scholar
  86. 86.
    P. Hagenmuller, A. Lecerf, C.R. Hebd. Séances Acad. Sci. 245, 1546 (1957).Google Scholar
  87. 87.
    E. Papafil, M.-A. Papafil, C. Beldie, Analele stiint univ “Al. I. Cuza” Iasi Sect I 4, 153 (1958).Google Scholar
  88. 88.
    B. Belhachemi, A.A. Gotouk, J. Chim. Phys. 96, 1186 (1999).CrossRefGoogle Scholar
  89. 89.
    Wagner, Z. Phys. Chem. 132, 273 (1928).Google Scholar
  90. 90.
    I. Prigogine, Bull. Soc. Chim. Belg. 52, 115 (1943).Google Scholar
  91. 91.
    J.L. Meijering, Philips Res. Rep. 5, 333 (1950).Google Scholar
  92. 92.
    M.T. Record jr., C.F. Anderson, T.M. Lohman, Q. Rev. Biophys. 11, 103 (1978).MATHGoogle Scholar
  93. 93.
    G.S. Manning, Q. Rev. Biophys. 11, 179 (1978).Google Scholar
  94. 94.
    B.E. Conway, J.A.V. Butler, J. Chem. Soc., 3075 (1952).Google Scholar
  95. 95.
    J.D. Mandell, A.D. Hershey, Anal. Biochem. 1, 66 (1960).Google Scholar
  96. 96.
    J.F. Escara, J.R. Hutton, Biopolymers 19, 1315 (1980).Google Scholar
  97. 97.
    S.M. Mel’nikov et al. , J. Am. Chem. Soc. 121, 1130 (1999).CrossRefGoogle Scholar
  98. 98.
    S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996).Google Scholar
  99. 99.
    F.W. Studier, J. Mol. Biol. 41, 189 (1969).Google Scholar
  100. 100.
    A. Schaper, C. Urbanke, G. Maass, J. Biomol. Struct. Dyn. 6, 1211 (1991).Google Scholar
  101. 101.
    A.R. Wolfe, T. Meehan, Nucleic Acids Res. 22, 3147 (1994).Google Scholar
  102. 102.
    P. Debye, Polar Molecules (The Chemical Catalog Company, Inc, New York, 1929).Google Scholar
  103. 103.
    J.E. Hearst, Biopolymers 3, 57 (1965).Google Scholar
  104. 104.
    E. Westhof, Annu. Rev. Biophys. Biophys. Chem. 17, 125 (1988).CrossRefGoogle Scholar
  105. 105.
    DNA hydration, Biopolymers 48 (4), special issue (1998).Google Scholar
  106. 106.
    H. Eisenberg, G. Felsenfeld, J. Mol. Biol. 30, 17 (1967).Google Scholar
  107. 107.
    D.R. Lide (Editor), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003).Google Scholar
  108. 108.
    W. Saenger, Principles of Nucleic Acid Structure (Springer Verlag, New York, 1984).Google Scholar
  109. 109.
    J.D. Bernal, R. Fowler, J. Chem. Phys. 1, 515 (1933).Google Scholar
  110. 110.
    S. Neidle, H.M. Berman, H.S. Shieh, Nature 288, 129 (1980).Google Scholar
  111. 111.
    W. Saenger, C. Betzel, Nature 296, 581 (1982).Google Scholar
  112. 112.
    L.S. Lerman, J. Mol. Biol. 3, 18 (1961).MATHGoogle Scholar
  113. 113.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
  114. 114.
    P.G. de Gennes, J. Phys. (Paris) 37, 1445 (1976).Google Scholar
  115. 115.
    M. Joanicot, B. Revet, Biopolymers 26, 315 (1987).Google Scholar
  116. 116.
    J. Brahms, A.M. Michelson, K.E. van Holde, J. Mol. Biol. 15, 467 (1966).Google Scholar
  117. 117.
    J.G. Wetmur, Crit. Rev. Biochem. Mol. Biol. 26, 227 (1991).Google Scholar
  118. 118.
    M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).Google Scholar
  119. 119.
    J. Marmur, R. Rownd, C.L. Schildkraut, in Progress in Nucleic Acid Research, edited by J.N. Davidson, W.E. Cohn, Vol. 1 (Academic Press, New York, 1963) p. 231.Google Scholar
  120. 120.
    M. Eigen, in Nobel Symposium in Fast Reactions and Primary Processes in Chemical Kinetics, Stockholm, 1967, edited by S. Claesson, Vol. 5 (Almqvist and Wiksell, Stockholm, 1967) p. 333.Google Scholar
  121. 121.
    B. Duplantier, G. Jannink, J.-L. Sikorav, in Slow Dynamical Processes in Heterogeneous Soft Matters, Les Houches, 1995, edited by J.-P.C. Addad, A. Guillermo, A. Viallat, D. Bordeaux (Centre de Physique des Houches, Les Houches, 1995) p. 55.Google Scholar
  122. 122.
    T.C. Laurent, B.N. Preston, B. Carlsson, Eur. J. Biochem. 43, 231 (1974).Google Scholar
  123. 123.
    H. Tabor, Biochemistry 1, 496 (1962).Google Scholar
  124. 124.
    K. Morimatsu, M. Takahashi, Adv. Biophys. 31, 23 (1995).CrossRefGoogle Scholar
  125. 125.
    R.A. Anderson, J.E. Coleman, Biochemistry 14, 5485 (1975).Google Scholar
  126. 126.
    Y. Shamoo et al. , Nature 376, 362 (1995).CrossRefGoogle Scholar
  127. 127.
    S. Raghunathan et al. , Nature Struct. Biol. 7, 648 (2000).CrossRefGoogle Scholar
  128. 128.
    T. Hollis et al. , Proc. Natl. Acad. Sci. U.S.A. 98, 9557 (2001).CrossRefGoogle Scholar
  129. 129.
    R. Romer et al. , Biochemistry 23, 6132 (1984).Google Scholar
  130. 130.
    S.S. Tsang, S.A. Chow, C.M. Radding, Biochemistry 24, 3226 (1985).Google Scholar
  131. 131.
    S.P. Stoylov et al. , Biopolymers 41, 301 (1997).CrossRefGoogle Scholar
  132. 132.
    W.C. Williams et al. , Proc. Natl. Acad. Sci. U.S.A. 98 (2001).Google Scholar
  133. 133.
    P.K. Nandi, P.Y. Sizaret, Arch. Virol. 146, 327 (2001).CrossRefGoogle Scholar
  134. 134.
    G.G. Hammes, A.C. Park, J. Am. Chem. Soc. 90, 4151 (1968).Google Scholar
  135. 135.
    M. Eigen, L. DeMaeyer, Z. Elektrochem. 59, 986 (1955).Google Scholar
  136. 136.
    R.B. Bird, W.E. Stewart, I.N. Lightfoot, Transport Phenomena, 2nd ed. (John Wiley, New York, 2002).Google Scholar
  137. 137.
    J. Widom, R.L. Baldwin, Biopolymers 22, 1595 (1983).Google Scholar
  138. 138.
    M. Hegner, S.B. Smith, C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 96, 10109 (1999).CrossRefGoogle Scholar
  139. 139.
    D.R. Ripoll et al. , Proc. Natl. Acad. Sci. U.S.A. 90, 5128 (1993).Google Scholar
  140. 140.
    K. Nadassi, S.J. Wodak, J. Janin, Biochemistry 38, 1999 (1999).CrossRefGoogle Scholar
  141. 141.
    E.B. Zhulina, T.M. Birshtein, A.M. Skvortsov, Biopolymers 19, 805 (1980).Google Scholar
  142. 142.
    A.Y. Grosberg, Biophysics-USSR 29, 621 (1984).Google Scholar
  143. 143.
    J.E. Lennard-Jones, Proc. Phys. Soc. London 49, 140 (1937).CrossRefGoogle Scholar
  144. 144.
    N.K. Adam, The Physics and Chemistry of Surfaces, third ed. (Oxford University Press, Oxford, 1941).Google Scholar
  145. 145.
    G. Adam, M. Delbrück, in Structural Chemistry and Molecular Biology, edited by A. Rich, N. Davidson (W.H. Freeman & Company, San Francisco, 1968) p. 198.Google Scholar
  146. 146.
    D. Wang, S.-Y. Gou, D. Axelrod, Biophys. Chem. 43, 117 (1992).CrossRefMATHGoogle Scholar
  147. 147.
    V. Chan, D.J. Graves, S.E. Mckenzie, Biophys. J. 69, 2243 (1995).Google Scholar
  148. 148.
    S.A. Sukhishvili et al. , Macromolecules 35, 1776 (2002).CrossRefGoogle Scholar
  149. 149.
    M. Guthold et al. , Biophys. J. 77, 2284 (1999).Google Scholar
  150. 150.
    B. Maier, J.O. Rädler, Phys. Rev. Lett. 82, 1911 (1999).Google Scholar
  151. 151.
    B. Maier, J.O. Rädler, Macromolecules 33, 7185 (2000).CrossRefGoogle Scholar
  152. 152.
    A.D. Riggs, S. Bourgeois, M. Cohn, J. Mol. Biol. 53, 401 (1970).Google Scholar
  153. 153.
    P.H. Richter, M. Eigen, Biophys. Chem. 2, 255 (1974).CrossRefMATHGoogle Scholar
  154. 154.
    O.G. Berg, R.B. Winter, P.H. von Hippel, Biochemistry 20, 6929 (1981).Google Scholar
  155. 155.
    R.B. Winter, O.G. Berg, P.H. von Hippel, Biochemistry 20, 6961 (1981).Google Scholar
  156. 156.
    W. Grassmann, G. Deffner, Hoppe Seylers Z. Physiol. Chem. 293, 89 (1953).Google Scholar
  157. 157.
    K.S. Kirby, Biochem. J. 36, 117 (1959).CrossRefGoogle Scholar
  158. 158.
    J.M. Chirgwin et al. , Biochemistry 27, 5294 (1979).Google Scholar
  159. 159.
    P. Chomczynski, N. Sacchi, Anal. Biochem. 162, 156 (1987).CrossRefPubMedGoogle Scholar
  160. 160.
    M. Krings et al. , Cell 90, 19 (1997).CrossRefPubMedGoogle Scholar
  161. 161.
    A. Leo, C. Hansch, D. Elkins, Chem. Rev. 71, 525 (1971).Google Scholar
  162. 162.
    N. Lahav, Heterogen. Chem. Rev. 1, 159 (1994).Google Scholar
  163. 163.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).Google Scholar
  164. 164.
    A.I. Oparin, Adv. Enzymol. 27, 347 (1965).Google Scholar
  165. 165.
    M. Paecht-Horowitz, J. Berger, A. Katchalsky, Nature 228, 636 (1970).Google Scholar
  166. 166.
    M. Eigen, Naturwissenschaften 58, 465 (1971).Google Scholar
  167. 167.
    T.R. Cech, B.L. Bass, Annu. Rev. Biochem. 55, 599 (1986).CrossRefGoogle Scholar
  168. 168.
    J. Pelta, F. Livolant, J.-L. Sikorav, J. Biol. Chem. 271, 5656 (1996).CrossRefGoogle Scholar
  169. 169.
    S.L. Miller, Cold Spring Harb. Symp. Quant. Biol. 52, 17 (1987).Google Scholar
  170. 170.
    C. Saxinger, C. Ponnamperuma, C. Woese, Nature New Biol. 234, 172 (1971).Google Scholar
  171. 171.
    D.E. Koshland jr., Cold Spring Harb. Symp. Quant. Biol. 52, 1 (1987).Google Scholar
  172. 172.
    P. Mitchell, in The Origin of Life on Earth, edited by A.I. Oparin (Pergamon, London, Moscow, 1959) p. 437.Google Scholar
  173. 173.
    J.W. Szostak, D.P. Bartel, P.L. Luisi, Nature 409, 387 (2001).CrossRefGoogle Scholar
  174. 174.
    M. Perutz, Proc. R. Soc. London, Ser. B 167, 349 (1967).Google Scholar
  175. 175.
    G.F. Joyce, L.E. Orgel, J. Mol. Biol. 188, 433 (1986).Google Scholar
  176. 176.
    D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002).Google Scholar
  177. 177.
    D.W. Deamer, Microbiol. Mol. Biol. R. 61, 239 (1997).Google Scholar
  178. 178.
    B.S. Xing et al. , Environ. Sci. Technol. 28, 466 (1994).Google Scholar
  179. 179.
    C.R. Woese, Microbiol. Rev. 51, 221 (1987).Google Scholar
  180. 180.
    J.M. Tor, D.R. Lovley, Environ. Microbiol. 3, 281 (2001).CrossRefGoogle Scholar
  181. 181.
    T. Gold, Proc. Natl. Acad. Sci. U.S.A. 89, 6045 (1992).Google Scholar
  182. 182.
    N.R. Pace, Science 276, 734 (1997).CrossRefGoogle Scholar
  183. 183.
    M. Vargas et al. , Nature 395, 65 (1998).CrossRefGoogle Scholar
  184. 184.
    A. Fleming, Proc. R. Soc. London, Ser. B 96, 171 (1924).Google Scholar
  185. 185.
    H.L. Katcher, I. Schwartz, Biotechniques 16, 84 (1994).Google Scholar
  186. 186.
    H.F. Noller, V. Hoffarth, L. Zimniak, Science 256, 1416 (1992).Google Scholar
  187. 187.
    P. Nissen et al. , Science 289, 920 (2000).CrossRefGoogle Scholar
  188. 188.
    S.J. Singer, Adv. Protein Chem. 17, 1 (1962).Google Scholar
  189. 189.
    A. Zaks, A.M. Klibanov, J. Biol. Chem. 263, 3194 (1988).PubMedGoogle Scholar
  190. 190.
    A. Zaks, A.M. Klibanov, J. Biol. Chem. 263, 8017 (1988).Google Scholar
  191. 191.
    G. Felsenfeld, H.T. Miles, Annu. Rev. Biochem. 36, 407 (1967).CrossRefGoogle Scholar
  192. 192.
    V.A. Bloomfield, D.M. Crothers, I. Tinoco jr., Physical Chemistry of Nucleic Acids (Harper and Row, New York, 1974).Google Scholar
  193. 193.
    C.R. Cantor, P.R. Schimmel, Biophysical Chemistry. Part III. The Behavior of Biological Macromolecules (W.H. Freeman and Company, New York, 1980).Google Scholar
  194. 194.
    V.A. Bloomfield, D.M. Crothers, I. Tinoco jr., Nucleic Acids. Structure, Properties and Functions (University Science Books, Sausalito, 2000).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Groupe de Biophysique de l’ADNCEA/Saclay, DBJC/SBGMGif-sur-Yvette CedexFrance
  2. 2.Service de Physique des Etats CondensésCEA/Saclay, DRECAMGif-sur-Yvette CedexFrance

Personalised recommendations