Advertisement

The European Physical Journal E

, Volume 13, Issue 4, pp 359–362 | Cite as

Finite-size effects do not reduce the repeat spacing of phospholipid multibilayer stacks on a rigid substrate

  • T. A. Harroun
  • M. Koslowsky
  • M.-P. Nieh
  • V. A. Raghunathan
  • J. Katsaras
Article

Abstract.

Finite-size effects in stacks of phospholipid bilayers, in the fluid \(L_\alpha\) phase, are investigated using samples oriented on silicon substrates. Recently in this journal, such effects have been suggested as the probable cause of reduced lamellar repeat spacings in very thin samples made up of a few (<10) bilayers. Our systematic studies on samples of different thicknesses do not support this conclusion. At full hydration all samples are found to have the same repeat spacing, irrespective of their thickness. At lower hydrations, on the other hand, very thin samples, consisting of only a few bilayers, have a slightly larger spacing.

Keywords

Silicon Hydration Systematic Study Silicon Substrate Fluid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Katsaras, T. Gutberlet (Editors), Lipid Bilayers: Structure and Interactions (Springer, 2000).Google Scholar
  2. 2.
    J. Katsaras, Biophys. J. 75, 2157 (1998).Google Scholar
  3. 3.
    J.F. Nagle, J. Katsaras, Phys. Rev. E 59, 7018 (1999).CrossRefGoogle Scholar
  4. 4.
    Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras, J.F. Nagle, Phys. Rev. Lett. 63, 011907 (2001).CrossRefGoogle Scholar
  5. 5.
    L. Perino-Gallice, G. Fragneto, U. Mennicke, T. Salditt, F. Rieutord, Eur. Phys. J. E 8, 275 (2002).CrossRefGoogle Scholar
  6. 6.
    T. Salditt, C. Li, A. Spaar, U. Mennicke, Eur. Phys. J. E 7, 105 (2002).CrossRefGoogle Scholar
  7. 7.
    D. Constantin, U. Mennicke, C. Lic, T. Salditt, Eur. Phys. J. E 12, 283 (2003).CrossRefGoogle Scholar
  8. 8.
    J. Torbet, M.H.F. Wilkins, J. Theor. Biol. 62, 447 (1976).Google Scholar
  9. 9.
    N.P. Franks, W.R. Lieb, J. Mol. Biol. 133, 469 (1979).Google Scholar
  10. 10.
    G.S. Smith, C.R. Safinya, D. Roux, N.A. Clark, Mol. Cryst. Liq. Cryst. 144, 235 (1987).Google Scholar
  11. 11.
    J. Katsaras, V.A. Raghunathan, E.J. Dufourc, J. Dufourcq, Biochemistry 34, 4684 (1995).Google Scholar
  12. 12.
    J. Katsaras, D.S.-C. Yang, R.M. Epand, Biophys. J. 63, 1170 (1992).Google Scholar
  13. 13.
    S. Tristram-Nagle, R. Zhang, R.M. Suter, C.R. Worthington, W.-J. Sun, J.F. Nagle, Biochemistry 34, 4684 (1995).Google Scholar
  14. 14.
    R. Podgornik, V.A. Parsegian, Biophys. J. 72, 942 (1997).Google Scholar
  15. 15.
    W. Helfrich, Z. Naturforsch. A 33, 305 (1978).Google Scholar
  16. 16.
    J. Katsaras, M. Watson, J. Res. Nat. Bur. Stand. 71, 1737 (2000).CrossRefGoogle Scholar
  17. 17.
    Lianghui Gao, Leonardo Golubović, Phys. Rev. E 68, 1 (2003).Google Scholar
  18. 18.
    Lewis Greenspan, J. Res. Nat. Bur. Stand. A 81, 89 (1976).Google Scholar
  19. 19.
    G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Phys. Rev. Lett. 60, 813 (1988).CrossRefGoogle Scholar
  20. 20.
    J. Isrealachvilli, Intermolecular and Surface Forces, second edition (Academic Press, 2000).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • T. A. Harroun
    • 1
  • M. Koslowsky
    • 1
  • M.-P. Nieh
    • 1
  • V. A. Raghunathan
    • 2
  • J. Katsaras
    • 1
  1. 1.Steacie Institute for Molecular SciencesNational Research CouncilChalk RiverCanada
  2. 2.Raman Research InstituteBangaloreIndia

Personalised recommendations