Skip to main content
Log in

Multicanonical Monte Carlo simulations on intramolecular micelle formation in copolymers

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The formation of intramolecular micelles in copolymers with periodic sequence, where hydrophobic units (stickers) are periodically placed along the chain, is studied by using multicanonical Monte Carlo computer simulations for an off-lattice bead-rod model in three dimensions. With decreasing the temperature, a transition from random-coil conformations to micelles occurs and flower-type micelles are formed via the transition. The number of stickers forming a micelle core is limited by the excluded-volume effect of loop chains around micelle cores. By this effect, two intramolecular micelles are formed for long polymer chains with 60 bonds via the coil-to-micelle transition. By further decreasing the temperature, we find that another transition, i.e., a micelle-to-micelle transition, takes place. At this transition point, the two intramolecular micelles merge into one micelle. Furthermore, we extend the multicanonical MC method to study elastic properties of single polymer chains with strong attractive interactions under external force fields, and study how the intramolecular micellization affects the elastic property of single polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. McCormick (Editor), Stimuli-Responsive Water Soluble and Amphiphilic Polymers, ACS Symp. Ser., No. 780 (ACS, Washington, DC, 2000).

  2. J.E. Glass (Editor), Associative Polymers in Aqueous Media, ACS Symp. Ser., No. 765 (ACS, Washington, DC, 2000).

  3. S.W. Shalaby, C.L. McCormick, G.B. Butler (Editors), Water-Soluble Polymers: Synthesis, Solution Properties, and Applications, ACS Symp. Ser., No. 467 (ACS, Washington, DC, 1991).

  4. Y. Chang, C.L. McCormick, Macromolecules 26, 6121 (1993)

    Article  Google Scholar 

  5. Y. Morishima, S. Nomura, T. Ikeda, M. Seki, M. Kamachi, Macromolecules 28, 2874 (1995).

    Article  Google Scholar 

  6. B. Xu, L. Lin, K. Zhang, P.M. Macdonald, M.A. Winnik, R. Jenkins, D. Bassett, D. Wolf, O. Nuyken, Langmuir 13, 6896 (1997)

    Article  Google Scholar 

  7. K. Akiyoshi, J. Sunamoto, Supramol. Sci. 3, 157 (1996).

    Article  Google Scholar 

  8. A. Kikuchi, T. Nose, Macromolecules 29, 6770 (1996).

    Article  Google Scholar 

  9. G. Zhang, F.M. Winnik, C. Wu, Phys. Rev. Lett. 90, 035506 (2003).

    Article  PubMed  Google Scholar 

  10. A. Halperin, Macromolecules 24, 1418 (1991).

    Article  Google Scholar 

  11. O.V. Borisov, A. Halperin, Langmuir 11, 2911 (1995).

    Article  Google Scholar 

  12. O.V. Borisov, A. Halperin, Macromolecules 30, 4432 (1997).

    Article  Google Scholar 

  13. E.G. Timoshenko, Y.A. Kuznetsov, K.A. Dawson, Phys. Rev. E 57, 6801 (1998).

    Article  Google Scholar 

  14. F. Ganazzoli, J. Chem. Phys. 108, 9924 (1998).

    Article  Google Scholar 

  15. F. Ganazzoli, J. Chem. Phys. 112, 1547 (2000).

    Article  Google Scholar 

  16. J.M.P. van den Oever, F.A.M. Leermakers, G.J. Fleer, V.A. Ivanov, N.P. Shusharina, A.R. Khokhlov, P.G. Khalatur, Phys. Rev. E 65 041708 (2002).

  17. Y.A. Kuznetsov, E.G. Timoshenko, K.A. Dawson, J. Chem. Phys. 103, 4807 (1995).

    Article  Google Scholar 

  18. N. Urakami, M. Takasu, Mol. Simul. 19, 63 (1997).

    Google Scholar 

  19. Y. Rouault, Macromol. Theory Simul. 7, 359 (1998).

    Google Scholar 

  20. F. Ganazzoli, Y.A. Kuznetsov, E.G. Timoshenko, Macromol. Theory Simul. 10, 325 (2001).

    Article  Google Scholar 

  21. V.V. Vasilevskaya, A.A. Klochkov, P.G. Khalatur, A.R. Khokhlov, G. ten Brinke, Macromol. Theory Simul. 10, 389 (2001).

    Article  Google Scholar 

  22. I.R. Cooke, D.R.M. Williams, Macromolecules 36, 2149 (2003).

    Article  Google Scholar 

  23. See, e.g., T.E. Creighton (Editor), Protein Folding (Freeman, New York, 1992).

  24. B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)

    Article  Google Scholar 

  25. U.H.E. Hansmann, Y. Okamoto, Physica A 212, 415 (1994).

    Google Scholar 

  26. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    Article  Google Scholar 

  27. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller J. Chem. Phys. 21, 1087 (1953).

    Article  Google Scholar 

  28. A. Baumgärtner, J. Chem. Phys. 72, 871 (1980).

    Article  Google Scholar 

  29. In the literature, the heat capacity (or the specific heat) for single polymers is often given as the heat capacity at constant volume $C_{V}$ milchev93. Since the simulations have been performed under constant volume, the obtained heat capacity can be regarded as $C_{V}$. However, as explained in Section sec:model, the ensemble used in our computer simulation for single chains is that for constant temperature $T$ and force $K$. This ensemble is analogous to the isothermal-isobaric ensemble in the usual statistical mechanics. Therefore, the heat capacity obtained by such simulations is the heat capacity at constant force $K$, which is denoted by $C_{K}$.

  30. H. Jacobson, W.H. Stockmayer, J. Chem. Phys. 18, 1600 (1950).

    Article  Google Scholar 

  31. For an example, see A. Milchev, W. Paul, K. Binder, J. Chem. Phys. 99, 4786 (1993).

    Article  Google Scholar 

  32. We confirmed by simulations for short chains that results by the usual canonical algorithm are almost the same as those by the multicanonical algorithm if $\beta \epsilon < 4$. Therefore, we here restrict ourselves to the case of $\beta \epsilon < 4$ when we mention the results by the usual canonical algorithm.

  33. G. Chikenji, M. Kikuchi, Y. Iba, Phys. Rev. Lett. 83, 1886 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, T. Multicanonical Monte Carlo simulations on intramolecular micelle formation in copolymers. Eur. Phys. J. E 17, 381–388 (2005). https://doi.org/10.1140/epje/i2003-10163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10163-x

PACS.

Navigation