The European Physical Journal E

, Volume 15, Issue 2, pp 177–187 | Cite as

Viscoelastic phase separation in polymer blends

Article

Abstract.

In this paper, the dynamics and morphology of viscoelastic phase separation in polymer blends is investigated based on the two-fluid model in two dimensions. At critical composition, we have carefully checked the role of shear modulus, without taking account of bulk modulus. The results show that the higher shear modulus component tends to form a dispersed phase in the intermediate stage of phase separation, if the difference between the shear moduli of the components is large enough. This is opposite to the role of bulk modulus, that the higher bulk modulus component forms a networklike pattern without taking account of the shear modulus even if it is the minority phase. The morphological formation is determined by the competition of opposite effects of shear modulus and bulk modulus. For polymer blends at critical composition, the bulk modulus difference leads to a networklike pattern formed by the higher modulus component in the intermediate stage of phase separation. But if the difference between the shear moduli of the components is large enough, a co-continuous structure is observed, resulting from the competition between shear and bulk moduli. For off-critical composition, difference in bulk modulus also leads to a networklike pattern of the component with higher bulk modulus in the intermediate stage of phase separation, but phase inversion is observed rapidly. A small difference between the shear moduli of the components can support the networklike pattern to continue for longer time. But the networklike pattern does not occur for large difference between shear moduli.

Keywords

Phase Separation Shear Modulus Bulk Modulus Intermediate Stage Polymer Blend 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Gunton, M.S. Miguel, P.S. Sahni, Phase Transition and Critical Phenomena, edited by C. Domb, J.H. Lebowitz, Vol. 8 (Academic, London, 1983).Google Scholar
  2. 2.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977).CrossRefGoogle Scholar
  3. 3.
    A.J. Bray, Adv. Phys. 43, 357 (1994).Google Scholar
  4. 4.
    H. Furukawa, Adv. Phys. 34, 703 (1985).Google Scholar
  5. 5.
    I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
  6. 6.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).Google Scholar
  7. 7.
    K. Luo, Y. Yang, Macromol. Theory Simul. 11, 429 (2002).CrossRefGoogle Scholar
  8. 8.
    P.G. De Gennes, J. Chem. Phys. 72, 4756 (1980).CrossRefGoogle Scholar
  9. 9.
    K. Binder, H.L. Frisch, J. Jackle, J. Chem. Phys. 85, 1505 (1986).CrossRefGoogle Scholar
  10. 10.
    P. Pincus, J. Chem. Phys. 75, 1996 (1981).CrossRefGoogle Scholar
  11. 11.
    K. Binder, J. Chem. Phys. 79, 6387 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Onuki, J. Chem. Phys. 85, 1122 (1986).CrossRefGoogle Scholar
  13. 13.
    H. Tanaka, J. Phys. Condens. Matter 12, 207 (2000).CrossRefGoogle Scholar
  14. 14.
    H. Tanaka, Macromolecules 25, 6377 (1992).Google Scholar
  15. 15.
    H. Tanaka, Phys. Rev. Lett. 71, 3158 (1993).CrossRefGoogle Scholar
  16. 16.
    H. Tanaka, Phys. Rev. Lett. 76, 787 (1996).CrossRefGoogle Scholar
  17. 17.
    D. Sappelt, J. Jackle, Physica A 240, 453 (1997).Google Scholar
  18. 18.
    D. Sappelt, J. Jackle, Europhys. Lett. 37, 13 (1997).CrossRefGoogle Scholar
  19. 19.
    D. Sappelt, J. Jackle, Polymer 39, 5253 (1998).CrossRefGoogle Scholar
  20. 20.
    R. Ahluwalia, Phys. Rev. E 59, 263 (1999).CrossRefGoogle Scholar
  21. 21.
    N. Clarke, T.C.B. McLeish, S. Pavawongsak, J.S. Higgins, Macromolecules 30, 4459 (1997).CrossRefGoogle Scholar
  22. 22.
    Y. Cao, H. Zhang, Z. Xiong, Y. Yang, Macromol. Theory Simul. 10, 314 (2001).CrossRefGoogle Scholar
  23. 23.
    P.G. de Gennes, Macromolecules 9, 587; 594 (1976).Google Scholar
  24. 24.
    F. Brochard, P.G. de Gennes, Macromolecules 10, 1157 (1977); F. Brochard, J. Phys. (Paris) 44, 39 (1983).Google Scholar
  25. 25.
    E. Helfand, G.H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989).CrossRefGoogle Scholar
  26. 26.
    A. Onuki, Phys. Rev. Lett. 62, 2427 (1989); J. Phys. Soc. Jpn. 59, 3423 (1990).CrossRefGoogle Scholar
  27. 27.
    M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992).CrossRefGoogle Scholar
  28. 28.
    S.T. Milner, Phys. Rev. E 48, 3674 (1993).CrossRefGoogle Scholar
  29. 29.
    T. Taniguchi, A. Onuki, Phys. Rev. Lett. 77, 4910 (1996).CrossRefGoogle Scholar
  30. 30.
    H. Tanaka, T. Araki, Phys. Rev. Lett. 78, 4966 (1997).CrossRefGoogle Scholar
  31. 31.
    T. Araki, H. Tanaka, Macromolecules 34, 1953 (2001).CrossRefGoogle Scholar
  32. 32.
    H. Tanaka, Phys. Rev. E 56, 4451 (1997).CrossRefGoogle Scholar
  33. 33.
    H. Tanaka, T. Koyama, T. Araki, J. Phys. Condens. Matter 15, S383 (2003).Google Scholar
  34. 34.
    J. Zhang, Z. Zhang, H. Zhang, Y. Yang, Phys. Rev. E 64, 051510 (2001).CrossRefGoogle Scholar
  35. 35.
    Y. Huo, H. Zhang, Y. Yang, Macromolecules 36, 5383 (2003).CrossRefGoogle Scholar
  36. 36.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979).Google Scholar
  37. 37.
    J. Zhu, L.Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Makromolekulare Chemie and Freiburger MaterialforschungszentrumUniversität FreiburgFreiburgGermany

Personalised recommendations