Advertisement

The European Physical Journal E

, Volume 13, Issue 4, pp 379–390 | Cite as

Membranes with rotating motors: Microvortex assemblies

  • P. Lenz
  • J.-F. Joanny
  • F. Jülicher
  • J. Prost
Article

Abstract.

We study collections of rotatory motors confined to 2-dimensional manifolds. The rotational motion induces a repulsive hydrodynamic interaction between motors leading to a non-trivial collective behavior. For high rotation speed, motors should arrange on a triangular lattice exhibiting crystalline order. At low speed, they form a disordered phase where diffusion is enhanced by velocity fluctuations. In confining geometries and under suitable boundary conditions, motor-generated flow might enhance left-right symmetry-breaking transport. All these effects should be experimentally observable for motors driven by external fields and for dipolar biological motors embedded into lipid membranes in a viscoelastic solvent.

Keywords

Lipid Boundary Condition Manifold Rotation Speed Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts et al. , The Molecular Biology of the Cell, 4th edition (Garland, New York, 2002).Google Scholar
  2. 2.
    M. Yoshida, E. Muneyuki, T. Hisabori, Nat. Rev. Mol. Cell. Biol. 2, 669 (2001).CrossRefMATHGoogle Scholar
  3. 3.
    P.D. Boyer, Biochim. Biophys. Acta 1140, 215 (1993).CrossRefGoogle Scholar
  4. 4.
    J.P. Abrahams, A.G. Leslie, R. Lutter, J.E. Walker, Nature 370, 621 (1994).PubMedGoogle Scholar
  5. 5.
    H. Noji, R. Yasuda, M. Yoshida, K. Kinosita jr., Nature 386, 299 (1997).PubMedGoogle Scholar
  6. 6.
    J.R. Blake, Math. Meth. Appl. Sci. 24, 1469 (2001).MATHGoogle Scholar
  7. 7.
    S. Nonaka et al. , Cell 95, 829 (1998).PubMedGoogle Scholar
  8. 8.
    S. Gueron et al. , Proc. Natl. Acad. Sci. USA 94, 6001 (1997).CrossRefGoogle Scholar
  9. 9.
    S. Nonaka, H. Shiratori, Y. Saijoh, H. Hamada, Nature 418, 96 (2002).PubMedGoogle Scholar
  10. 10.
    C.J. Tabin, K.J. Vogan, Genes Develop. 17, 1 (2003).CrossRefGoogle Scholar
  11. 11.
    J. McGrath et al. , Cell 114, 61 (2003).Google Scholar
  12. 12.
    H. Hamada, C. Meno, D. Watanabe, Y. Saijoh, Nat. Rev. Mol. Cell. Biol. 3, 103 (2001).Google Scholar
  13. 13.
    H. Liu et al. , Nat. Mater. 1, 173 (2002).CrossRefGoogle Scholar
  14. 14.
    R.K. Soong et al. , Science 290, 1555 (2000).CrossRefPubMedGoogle Scholar
  15. 15.
    J. Prost, R. Bruinsma, Europhys. Lett. 33, 321 (1996); see also A.W.C. Lau et al. , cond-mat/0309510 (2003).CrossRefGoogle Scholar
  16. 16.
    See, e.g., R. Lipowsky, Nature 349, 475 (1991) and U. Seifert, Adv. Phys. 46, 13 (1997) for reviews.PubMedGoogle Scholar
  17. 17.
    J. Prost, J.-B. Manneville, R. Bruinsma, Eur. Phys. J. B 1, 465 (1998).CrossRefGoogle Scholar
  18. 18.
    S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000).CrossRefGoogle Scholar
  19. 19.
    J.-B. Manneville, P. Bassereau, D. Lévy, J. Prost, Phys. Rev. Lett. 82, 4356 (1999).CrossRefGoogle Scholar
  20. 20.
    J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001).CrossRefGoogle Scholar
  21. 21.
    S. Levin, R. Korenstein, Biophys. J. 60, 733 (1991).Google Scholar
  22. 22.
    S. Tuvia et al. , Proc. Natl. Acad. Sci. USA 94, 5045 (1997).CrossRefGoogle Scholar
  23. 23.
    F. Brochard, J.-F. Lennon, J. Phys. 36, 1035 (1975).Google Scholar
  24. 24.
    B.A. Grzybowski, H.A. Stone, G.M. Whitesides, Nature 405, 1033 (2000).CrossRefGoogle Scholar
  25. 25.
    B.A. Grzybowski, X. Jiang, H.A. Stone, G.M. Whitesides, Phys. Rev. E 64, 011603 (2001).CrossRefGoogle Scholar
  26. 26.
    P. Galajda, P. Ormos, Appl. Phys. Lett. 80, 4653 (2002).CrossRefGoogle Scholar
  27. 27.
    P. Lenz, J.-F. Joanny, F. Jülicher, J. Prost, Phys. Rev. Lett., 91, 108104 (2003).Google Scholar
  28. 28.
    R. Yasuda et al. , Cell 93, 1117 (1998).CrossRefGoogle Scholar
  29. 29.
    K. Kinosita jr., R. Yasuda, H. Noji, S. Ishiwata, M. Yoshida, Cell 93, 21 (1998).CrossRefGoogle Scholar
  30. 30.
    L.D. Landau, E.M. Lifshitz, Hydrodynamics (Pergamon, New York, 1959).Google Scholar
  31. 31.
    I.S. Gradshteyn, I.M. Rhyzik, Table of Integrals, Series and Products, 5th edition (Academic Press, San Diego, 1994).Google Scholar
  32. 32.
    C. Barentin et al. , J. Fluid Mech. 397, 331 (1999).CrossRefMATHGoogle Scholar
  33. 33.
    J.D. Jackson, Classical Electrodynamics (John Wiley, New York, 1999).Google Scholar
  34. 34.
    E.B. Sonin, Rev. Mod. Phys. 59, 87 (1987).CrossRefMathSciNetGoogle Scholar
  35. 35.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).Google Scholar
  36. 36.
    It should be emphasized that our analysis is only valid for N>2. For N=2, the motors simply rotate around their center of mass and their interaction has no radial component. However, the presence of additional motors gives rise to a radial interaction which, in general, is repulsive.Google Scholar
  37. 37.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973).Google Scholar
  38. 38.
    S.I. Rubinow, J.B. Keller, J. Fluid Mech. 11, 447 (1961).MATHGoogle Scholar
  39. 39.
    P. Brunn, Rheol. Acta 15, 163 (1976).MATHGoogle Scholar
  40. 40.
    Following the discussion given in reference [20], a force quadrupole is the simplest force distribution which is consistent with the rotational motion of the motor and the requirement that no external force is present.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • P. Lenz
    • 1
    • 2
  • J.-F. Joanny
    • 1
  • F. Jülicher
    • 1
    • 3
  • J. Prost
    • 1
    • 4
  1. 1.Institut CurieUMR 168Paris Cédex 05France
  2. 2.Fachbereich PhysikPhilipps-Universität MarburgMarburgGermany
  3. 3.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  4. 4.Ecole supérieure de physique et chimie industriellesParis Cédex 05France

Personalised recommendations