The European Physical Journal E

, Volume 13, Issue 3, pp 225–237 | Cite as

Calculation of the persistence length of a flexible polymer chain with short-range self-repulsion



For a self-repelling polymer chain consisting of n segments we calculate the persistence length \(L\left(j,n\right)\), defined as the projection of the end-to-end vector on the direction of the j-th segment. This quantity shows some pronounced variation along the chain. Using the renormalization group and \(\epsilon\)-expansion we establish the scaling form and calculate the scaling function to order \(\epsilon^2\). Asymptotically, the simple result \(L\left(j,n\right) \approx \mbox{const} \left(j\left(n-j\right)/n\right)^{2\nu-1}\) emerges for dimension d = 3. Also away from the excluded-volume limit \(L\left(j,n\right)\) is found to behave very similar to the swelling factor of a chain of length \(j \left(n-j\right)/n\). We carry through simulations which are found to be in good accord with our analytical results. For d = 2 both our and previous simulations as well as theoretical arguments suggest the existence of logarithmic anomalies.


Polymer Polymer Chain Renormalization Group Theoretical Argument Previous Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971).Google Scholar
  2. 2.
    M. Ullner, C.E. Woodward, Macromolecules 35, 1437 (2002).CrossRefGoogle Scholar
  3. 3.
    R. Everaers, A. Milchev, V. Yamakov, Eur. Phys. J. E 8, 3 (2002).CrossRefGoogle Scholar
  4. 4.
    R.R. Netz, H. Orland, Eur. Phys. J. 8, 81 (1999).CrossRefGoogle Scholar
  5. 5.
    P. Grassberger, Phys. Lett. A 89, 381 (1982).CrossRefGoogle Scholar
  6. 6.
    S. Redner, V. Privman, J. Phys. A 20, L 857 (1987).Google Scholar
  7. 7.
    V. Privman, S. Redner, Z. Phys. B 67, 129 (1987).Google Scholar
  8. 8.
    L. Schäfer, A. Ostendorf, J. Hager, J. Phys. A 32, 7875 (1999).Google Scholar
  9. 9.
    L. Schäfer, Excluded Volume Effects in Polymer Solutions (Springer, Heidelberg, 1999).Google Scholar
  10. 10.
    R. Schloms, V. Dohm, Nucl. Phys. B 328, 639 (1989).CrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Duplantier, J. Phys. (Paris) 41 L 409 (1980).Google Scholar
  12. 12.
    P. Grassberger, Phys. Rev. E 56, 3682 (1997).CrossRefGoogle Scholar
  13. 13.
    P. Grassberger, P. Sutter, L. Schäfer, J. Phys. A 30, 7039 (1997).Google Scholar
  14. 14.
    J. des Cloizeaux, G. Jannink, Polymers in Solution (Clarendon Press, Oxford, 1990).Google Scholar
  15. 15.
    U. Micka, K. Kremer, Phys. Rev. E 54, 2653 (1996).CrossRefGoogle Scholar
  16. 16.
    S. Förster, M. Schmidt, M. Antonietti, J. Phys. Chem. 96, 4008 (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Universität Duisburg-EssenEssenGermany

Personalised recommendations