The European Physical Journal E

, Volume 12, Issue 1, pp 69–76 | Cite as

Phase coexistence and dynamic properties of water in nanopores

  • I. Brovchenko
  • A. Geiger
  • A. Oleinikova
  • D. Paschek


The dynamical properties of a confined fluid depend strongly on the (spatially varying) density. Its knowledge is therefore an important prerequisite for molecular-dynamics (MD) simulations and the analysis of experimental data. In a mixed Gibbs ensemble Monte Carlo (GEMC)/MD simulation approach we first apply the GEMC method to find possible phase states of water in hydrophilic and hydrophobic nanopores. The obtained phase diagrams evidence that a two-phase state is the most probable state of a fluid in incompletely filled pores in a wide range of temperature and level of pore filling. Pronounced variations of the average and local densities are observed. Subsequently, we apply constant-volume MD simulations to obtain water diffusion coefficients and to study their spatial variation along the pore radius. In general, water diffusivity slightly decreases in a hydrophilic pore and noticeably increases in a hydrophobic pore (up to about 40% with respect to the bulk value). In the range of gradual density variations the local diffusivity essentially follows the inverse density and the water binding energy. The diffusivity in the quasi-two-dimensional water layers near the hydrophilic wall decreases by 10 to 20% with respect to the bulk value. The average diffusivity of water in incompletely filled pore is discussed on the basis of the water diffusivities in the coexisting phases.


Pore Radius Water Diffusivity Phase Coexistence Average Diffusivity Pore Filling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.-C. Belissent-Funel, S.H. Chen, J.-M. Zanotti, Phys. Rev. E 51, 4558 (1995).CrossRefGoogle Scholar
  2. 2.
    V. Crupi, S. Magazu, D.Majolino, P. Migliardo, V. Venuti, M.-C. Bellissent-Funel, J. Phys. Condens. Matter 12, 3625 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mora, H. Hamano, T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999).CrossRefGoogle Scholar
  4. 4.
    E.W. Hansen, R. Schmidt, M. Stocker, D. Akporiaye, Microporous Mater. 5, 143 (1995).CrossRefMATHGoogle Scholar
  5. 5.
    R. Kimmich, S. Stapf, A.I. Maklakov, V.D. Skirda, E.V. Khozina, Magn. Reson. Imaging 14, 793 (1996).CrossRefGoogle Scholar
  6. 6.
    F. D’Orazio, S. Bhattacharja, W.P. Halperin, R. Gerhardt, Phys. Rev. Lett. 63, 43 (1989).CrossRefGoogle Scholar
  7. 7.
    F. D’Orazio, S. Bhattacharja, W.P. Halperin, R. Gerhardt, Phys. Rev. B 42, 6503 (1990).CrossRefGoogle Scholar
  8. 8.
    S.M. Auerbach, Int. Rev. Phys. Chem. 19, 155 (2000).CrossRefGoogle Scholar
  9. 9.
    R. Sonnenschein, K. Heinzinger, Chem. Phys. Lett. 102, 550 (1983).CrossRefGoogle Scholar
  10. 10.
    G. Barabino, C. Gavotti, M. Marchesi, Chem. Phys. Lett. 104, 478 (1984).CrossRefGoogle Scholar
  11. 11.
    S.H. Lee, P.J. Rossky, J. Chem. Phys. 100, 3334 (1994).CrossRefGoogle Scholar
  12. 12.
    J.J. Lopez Cascales, H.J.C. Berendsen, J. Garcia de la Torre, J. Phys. Chem. 100, 8621 (1996).CrossRefGoogle Scholar
  13. 13.
    C. Harting, W. Witschel, E. Spohr, J. Phys. Chem. B 102, 1241 (1998).CrossRefGoogle Scholar
  14. 14.
    E. Spohr, C. Hartnig, P. Gallo, M. Rovere, J. Mol. Liquids 80, 165 (1999).CrossRefGoogle Scholar
  15. 15.
    P. Gallo, M. Rovere, E. Spohr, J. Chem. Phys. 113, 11324 (2000).CrossRefGoogle Scholar
  16. 16.
    J. Martiand, M.C. Gordillo, Phys. Rev. B 64, 021504 (2001).Google Scholar
  17. 17.
    P. Gallo, M. Rapinesi, M. Rovere, J. Chem. Phys. 117, 369 (2002).CrossRefGoogle Scholar
  18. 18.
    F. Sciortino, A. Geiger, H.E. Stanley, J. Chem. Phys. 96, 3857 (1992).CrossRefGoogle Scholar
  19. 19.
    I. Brovchenko, D. Paschek, A. Geiger, J. Chem. Phys. 115, 5026 (2000)CrossRefGoogle Scholar
  20. 20.
    I. Brovchenko, A. Geiger, A. Oleinikova, Phys. Chem. Chem. Phys. 3, 1567 (2001)CrossRefGoogle Scholar
  21. 21.
    I. Brovchenko, A. Geiger, A. Oleinikova, submitted to J. Chem. Phys.Google Scholar
  22. 22.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys. 79, 926 (1983).CrossRefGoogle Scholar
  23. 23.
    B.K. Peterson, K.E. Gubbins, G.S. Heffelfinger, U. Marini Bettolo Marconi, F. Swol, J. Chem. Phys. 88, 6487 (1988).CrossRefGoogle Scholar
  24. 24.
    L.D. Gelb, K.E. Gubbins, Phys. Rev. E 55, (1997) R1290Google Scholar
  25. 25.
    A.Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)Google Scholar
  26. 26.
    U. Essmann, L. Perera, M.L. Berkowitz, T.A. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  27. 27.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
  28. 28.
    M.P. Allen, A.J. Masters, Mol. Phys. 79, 435 (1993).Google Scholar
  29. 29.
    M. Schoen, J.H. Cushman, D.J. Diestler, C.L. Rhykerd jr., J. Chem. Phys. 88, 1394 (1988).CrossRefGoogle Scholar
  30. 30.
    A. Brodka, Mol. Phys. 82, 1075 (1994).Google Scholar
  31. 31.
    J. Dore, Chem. Phys. 258, 327 (2000).CrossRefGoogle Scholar
  32. 32.
    L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).CrossRefGoogle Scholar
  33. 33.
    F. Varnik, J. Baschnagel, K. Binder, Phys. Rev. E 65, 021507 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • I. Brovchenko
    • 1
  • A. Geiger
    • 1
  • A. Oleinikova
    • 2
  • D. Paschek
    • 1
  1. 1.Physical ChemistryUniversity of DortmundDortmundGermany
  2. 2.Ruhr-Bochum UniversityBochumGermany

Personalised recommendations