Skip to main content
Log in

Phase coexistence and dynamic properties of water in nanopores

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamical properties of a confined fluid depend strongly on the (spatially varying) density. Its knowledge is therefore an important prerequisite for molecular-dynamics (MD) simulations and the analysis of experimental data. In a mixed Gibbs ensemble Monte Carlo (GEMC)/MD simulation approach we first apply the GEMC method to find possible phase states of water in hydrophilic and hydrophobic nanopores. The obtained phase diagrams evidence that a two-phase state is the most probable state of a fluid in incompletely filled pores in a wide range of temperature and level of pore filling. Pronounced variations of the average and local densities are observed. Subsequently, we apply constant-volume MD simulations to obtain water diffusion coefficients and to study their spatial variation along the pore radius. In general, water diffusivity slightly decreases in a hydrophilic pore and noticeably increases in a hydrophobic pore (up to about 40% with respect to the bulk value). In the range of gradual density variations the local diffusivity essentially follows the inverse density and the water binding energy. The diffusivity in the quasi-two-dimensional water layers near the hydrophilic wall decreases by 10 to 20% with respect to the bulk value. The average diffusivity of water in incompletely filled pore is discussed on the basis of the water diffusivities in the coexisting phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-C. Belissent-Funel, S.H. Chen, J.-M. Zanotti, Phys. Rev. E 51, 4558 (1995).

    Article  Google Scholar 

  2. V. Crupi, S. Magazu, D.Majolino, P. Migliardo, V. Venuti, M.-C. Bellissent-Funel, J. Phys. Condens. Matter 12, 3625 (2000)

    Article  Google Scholar 

  3. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mora, H. Hamano, T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999).

    Article  Google Scholar 

  4. E.W. Hansen, R. Schmidt, M. Stocker, D. Akporiaye, Microporous Mater. 5, 143 (1995).

    Article  MATH  Google Scholar 

  5. R. Kimmich, S. Stapf, A.I. Maklakov, V.D. Skirda, E.V. Khozina, Magn. Reson. Imaging 14, 793 (1996).

    Article  Google Scholar 

  6. F. D’Orazio, S. Bhattacharja, W.P. Halperin, R. Gerhardt, Phys. Rev. Lett. 63, 43 (1989).

    Article  Google Scholar 

  7. F. D’Orazio, S. Bhattacharja, W.P. Halperin, R. Gerhardt, Phys. Rev. B 42, 6503 (1990).

    Article  Google Scholar 

  8. S.M. Auerbach, Int. Rev. Phys. Chem. 19, 155 (2000).

    Article  Google Scholar 

  9. R. Sonnenschein, K. Heinzinger, Chem. Phys. Lett. 102, 550 (1983).

    Article  Google Scholar 

  10. G. Barabino, C. Gavotti, M. Marchesi, Chem. Phys. Lett. 104, 478 (1984).

    Article  Google Scholar 

  11. S.H. Lee, P.J. Rossky, J. Chem. Phys. 100, 3334 (1994).

    Article  Google Scholar 

  12. J.J. Lopez Cascales, H.J.C. Berendsen, J. Garcia de la Torre, J. Phys. Chem. 100, 8621 (1996).

    Article  Google Scholar 

  13. C. Harting, W. Witschel, E. Spohr, J. Phys. Chem. B 102, 1241 (1998).

    Article  Google Scholar 

  14. E. Spohr, C. Hartnig, P. Gallo, M. Rovere, J. Mol. Liquids 80, 165 (1999).

    Article  Google Scholar 

  15. P. Gallo, M. Rovere, E. Spohr, J. Chem. Phys. 113, 11324 (2000).

    Article  Google Scholar 

  16. J. Martiand, M.C. Gordillo, Phys. Rev. B 64, 021504 (2001).

    Google Scholar 

  17. P. Gallo, M. Rapinesi, M. Rovere, J. Chem. Phys. 117, 369 (2002).

    Article  Google Scholar 

  18. F. Sciortino, A. Geiger, H.E. Stanley, J. Chem. Phys. 96, 3857 (1992).

    Article  Google Scholar 

  19. I. Brovchenko, D. Paschek, A. Geiger, J. Chem. Phys. 115, 5026 (2000)

    Article  Google Scholar 

  20. I. Brovchenko, A. Geiger, A. Oleinikova, Phys. Chem. Chem. Phys. 3, 1567 (2001)

    Article  Google Scholar 

  21. I. Brovchenko, A. Geiger, A. Oleinikova, submitted to J. Chem. Phys.

  22. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys. 79, 926 (1983).

    Article  Google Scholar 

  23. B.K. Peterson, K.E. Gubbins, G.S. Heffelfinger, U. Marini Bettolo Marconi, F. Swol, J. Chem. Phys. 88, 6487 (1988).

    Article  Google Scholar 

  24. L.D. Gelb, K.E. Gubbins, Phys. Rev. E 55, (1997) R1290

    Google Scholar 

  25. A.Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)

    Google Scholar 

  26. U. Essmann, L. Perera, M.L. Berkowitz, T.A. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995).

    Article  Google Scholar 

  27. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  Google Scholar 

  28. M.P. Allen, A.J. Masters, Mol. Phys. 79, 435 (1993).

    Google Scholar 

  29. M. Schoen, J.H. Cushman, D.J. Diestler, C.L. Rhykerd jr., J. Chem. Phys. 88, 1394 (1988).

    Article  Google Scholar 

  30. A. Brodka, Mol. Phys. 82, 1075 (1994).

    Google Scholar 

  31. J. Dore, Chem. Phys. 258, 327 (2000).

    Article  Google Scholar 

  32. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

    Article  Google Scholar 

  33. F. Varnik, J. Baschnagel, K. Binder, Phys. Rev. E 65, 021507 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Brovchenko.

Additional information

Received: 1 January 2003, Published online: 14 October 2003

PACS:

61.20.Ja Computer simulation of liquid structure - 64.70.Fx Liquid-vapor transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brovchenko, I., Geiger, A., Oleinikova, A. et al. Phase coexistence and dynamic properties of water in nanopores. Eur. Phys. J. E 12, 69–76 (2003). https://doi.org/10.1140/epje/i2003-10028-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10028-4

Keywords

Navigation