The European Physical Journal E

, Volume 12, Issue 1, pp 63–68 | Cite as

Dynamics of quantum liquids in confinement, theory and experiment

  • H. R. Glyde
  • F. Albergamo
  • R. T. Azuah
  • J. Bossy
  • B. Fåk


Liquid 4He immersed in porous media such as aerogel, Vycor, and Geltech silica are excellent examples of bosons in disorder and confinement. Of special interest is the impact of disorder on Bose-Einstein condensation (BEC), on the elementary excitations of the superfluid and on their connection to the superfluid properties. Indeed, the modifications induced by disorder can be used to reveal the interdependence of BEC, the excitations and superfluidity. To date, the superfluid properties in porous media are much more completely documented than BEC or the excitations. In this paper, we review measurements of the excitations by neutron scattering, focusing particularly on their temperature dependence and the existence of phonon-roton excitations at higher temperatures. The weight of single excitation response at higher temperatures suggests the existence of localized BEC above the superfluid-normal transition temperature in porous media. We sketch several recent predictions made for BEC, the excitations, and the superfluid properties in disorder. Connections with other “Dirty Bose systems” are made.


Porous Medium Transition Temperature Special Interest Neutron Scattering Elementary Excitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. de Kinder, G. Coddens, R. Millet, Z. Phys. B Condens. Matter 95, 511 (1994).Google Scholar
  2. 2.
    G. Coddens, J. de Kinder, R. Millet, J. Non-Cryst. Solids188, 41 (1995).Google Scholar
  3. 3.
    O. Plantevin, B. Fåk, H.R. Glyde, J. Bossy, J.R. Beamish, Phys. Rev. B 57, 10775 (1998).CrossRefGoogle Scholar
  4. 4.
    H.R. Glyde, B. Fåk, O. Plantevin, J. Low Temp. Phys. 113, 537 (1998).CrossRefGoogle Scholar
  5. 5.
    B. Fåk, O. Plantevin, H.R. Glyde, Physica B 276-278, 806 (2000).Google Scholar
  6. 6.
    Glyde, H.R., O. Plantevin, B. Fåk, G. Coddens, P.S. Danielson, H. Schober, Phys. Rev. Lett. 84, 2646 (2000).CrossRefGoogle Scholar
  7. 7.
    O. Plantevin, B. Fåk, H.R. Glyde, J. Phys. Colloq. IV 10, Pr7, 177 (2000).Google Scholar
  8. 8.
    B. Fåk, O. Plantevin, H.R. Glyde, N. Mulders, Phys. Rev. Lett. 85, 3886 (2000).CrossRefGoogle Scholar
  9. 9.
    B. Fåk, O. Plantevin, H.R. Glyde, J. Phys. Colloq. IV 10, Pr7, 163 (2000).Google Scholar
  10. 10.
    H.R. Glyde, O. Plantevin, B. Fåk, J. Bossy, in Proceedings of ILL Millennium Symposium (Scientific Coordination Office, ILL, Grenoble, 2001) p. 91.Google Scholar
  11. 11.
    O. Plantevin, B. Fåk, H.R. Glyde, N. Mulders, J. Bossy, G. Coddens, H. Schober, Phys. Rev. B 63, 224508 (2001).CrossRefGoogle Scholar
  12. 12.
    B. Fåk, H.R. Glyde, in Advances in Quantum Many-Body Theory, edited by E. Krotscheck, J. Navarro, Vol. 4 (World Scientific, Singapore, 2002).Google Scholar
  13. 13.
    O. Plantevin, H.R. Glyde, B. Fåk, J. Bossy, F. Albergamo, N. Mulders, H. Schober, Phys. Rev. B 65, 224505 (2002).CrossRefGoogle Scholar
  14. 14.
    J.D. Reppy, J. Low Temp. Phys. 87, 205 (1992).Google Scholar
  15. 15.
    N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947).Google Scholar
  16. 16.
    J. Gavoret, P. Noziéres, Ann. Phys. (N.Y.) 28, 349 (1964).Google Scholar
  17. 17.
    L.D. Landau, I.M. Khalatnikov, Zh. Eksp. Teor. Fiz.19, 637 (1949).Google Scholar
  18. 18.
    L.D. Landau, J. Phys. USSR 5, 71 (1941).MATHGoogle Scholar
  19. 19.
    L.D. Landau, J. Phys. USSR XI, 91 (1947).Google Scholar
  20. 20.
    P. Noziéres, D. Pines, in Theory of Quantum Liquids, Vol. II (Addison-Wesley, Redwood City, CA, 1990).Google Scholar
  21. 21.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999).CrossRefGoogle Scholar
  22. 22.
    C.R. Anderson, J.H. Andersen, J. Bossy, W.G. Stirling, R.M. Dimeo, P.E. Sokol, J.C. Cook, D.W. Brown, Phys. Rev. B59, 13588 (1999).Google Scholar
  23. 23.
    R.T. Azuah, H.R. Glyde, J.R. Beamish, M.A. Adams, J. Low Temp. Phys. 117, 113 (1999).CrossRefGoogle Scholar
  24. 24.
    R.M. Dimeo, P.E. Sokol, C.R. Anderson, W.G. Stirling, K.H. Andersen, M.A. Adams, Phys. Rev. Lett. 81, 5860 (1998).CrossRefGoogle Scholar
  25. 25.
    C.R. Anderson, W.G. Stirling, K.H. Andersen, P.E. Sokol, R.M. Dimeo, Physica B 276-278, 820 (2000).Google Scholar
  26. 26.
    C.R. Anderson, K.H. Andersen, W.G. Stirling, P.E. Sokol, R.M. Dimeo, Phys. Rev. B 65, 174509 (2002).CrossRefGoogle Scholar
  27. 27.
    F. Albergamo, PhD Thesis, University of Paris XI, 2001.Google Scholar
  28. 28.
    F. Albergamo, J. Bossy, H.R. Glyde, A.-J. Dianoux, Phys. Rev. B 67, 224506 (2003).CrossRefGoogle Scholar
  29. 29.
    H.J. Lauter, H. Godfrin, P. Leiderer, J. Low Temp. Phys. 87, 425 (1992).Google Scholar
  30. 30.
    B.E. Clements, H. Godfrin, E. Krotscheck, H.J. Lauter, P. Leiderer, V. Passiouk, C.J. Tymczak, Phys. Rev. B 53, 12242 (1996).CrossRefGoogle Scholar
  31. 31.
    M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Phys. Rev. Lett. 61, 1950 (1988).CrossRefGoogle Scholar
  32. 32.
    H.R. Glyde, R.T. Azuah, W.G. Stirling, Phys. Rev. B 62, 14 337 (2000).CrossRefGoogle Scholar
  33. 33.
    R.T. Azuah, H.R. Glyde, R. Scherm, N. Mulders, B. Fåk, J. Low Temp. Phys. 130, 557 (2003).CrossRefGoogle Scholar
  34. 34.
    H.R. Glyde, R.T. Azuah, R. Scherm, B. Fåk, in ISIS 2002, ISIS Facility Annual Report Highlights, 2002, p. 42.Google Scholar
  35. 35.
    K. Huang, Meng, H.-F., Phys. Rev. Lett. 69, 644 (1992).CrossRefGoogle Scholar
  36. 36.
    I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).Google Scholar
  37. 37.
    G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. A 66, 023603 (2002).CrossRefGoogle Scholar
  38. 38.
    M.C. Gordillo, D.M. Ceperley, Phys. Rev. Lett. 85, 4735 (2000).CrossRefGoogle Scholar
  39. 39.
    S. Giorgini, S. Stringari, Phys. Rev. B 49, 12983 (1994).CrossRefGoogle Scholar
  40. 40.
    A.V. Lopatin, V.M. Vinokur, Phys. Rev. Lett. 88, 235503 (2002).CrossRefGoogle Scholar
  41. 41.
    L. Zhang, Phys. Rev. B47, 14364 (1993).Google Scholar
  42. 42.
    M. Boninsegni, H.R. Glyde, J. Low Temp. Phys. 112, 251 (1998).CrossRefGoogle Scholar
  43. 43.
    N. Trivedi, A. Ghosal, M. Randeria, Int. J. Mod. Phys. B 15, 1347 (2001).CrossRefGoogle Scholar
  44. 44.
    P. Thibault, J.J. Prejean, L. Puech, Czech. J. Phys. 46, 149 (1996).Google Scholar
  45. 45.
    Bunkov, Y.-M., A.S. Chen, D.J. Cousins, H. Godfrin, Phys. Rev. Lett. 85, 3456 (2000).CrossRefGoogle Scholar
  46. 46.
    J.A. Herb, J.G. Dash, Phys. Rev. Lett. 29, 846 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • H. R. Glyde
    • 1
  • F. Albergamo
    • 2
  • R. T. Azuah
    • 3
  • J. Bossy
    • 4
  • B. Fåk
    • 5
    • 6
  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.NIST Centre for Neutron ResearchNISTGaithersburgUSA
  4. 4.Centre de Recherche sur les Trés Basses TempératuresCNRSGrenobleFrance
  5. 5.ISIS FacilityRutherford Appleton LaboratoryChilton, Didcot, OxonUnited Kingdom
  6. 6.Département de Recherche Fondamentale sur la Matiére CondenséeSPSMS, CEAGrenobleFrance

Personalised recommendations