Advertisement

The European Physical Journal E

, Volume 22, Issue 2, pp 111–116 | Cite as

Pressure variation of reentrant transition temperature in liquid crystals

  • A. Srivastava
  • D. Sa
  • S. Singh
Regular Articles

Abstract.

High pressure experimental studies show that in certain mesogenic materials, the nematic-smectic A (N-Sm A) transition temperature TAN exhibits nonlinear pressure dependence. As a consequence, the material shows reentrant phenomena that is a phase sequence nematic — smectic A — reentrant nematic appears. The characteristic features of this phenomenon have been addressed here within the framework of Landau-de-Gennes theory, where the coupling between nematic and smectic A order parameters (γ, λeff) plays an important role. The cubic coupling γ is chosen to be negative in order to form Sm A phase whereas the biquadratic coupling λeff is made large and positive to obtain reentrant behaviour. In the present work, we incorporate the pressure dependence in the theory through γ and λeff which justifies the experimental pressure dependence in the reentrant transition temperature \(\tilde{T}^{RE}_{AN}\). The pressure dependence of γ and λeff are employed in the calculation of excess specific heat capacity near the reentrant transition. The computed heat capacity shows strong pressure dependence near the reentrant transition which can be confirmed from high pressure measurement.

PACS.

05.70.Fh Phase transitions: general studies 64.70.Md Transitions in liquid crystals 61.30.-v Liquid crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.E. Cladis, Mol. Cryst. Liq. Cryst. 165, 85 (1988); P.E. Cladis, in Physical Propeties of Liquid Crystals, edited by D. Demus, G.W. Gray, H.W. Spiess, J. Goodby (Willey VCH, Weinheim, 1989) Google Scholar
  2. A. Nayeem, J.H. Freed, J. Phys. Chem. 93, 65 (1989) CrossRefGoogle Scholar
  3. S. Singh, Liquid Crystal Fundamentals (World Scientific, 2002), Chap. 5; S. Singh, Phase Transitions 72, 183 (2000) Google Scholar
  4. T. Narayanan, A. Kumar, Phys. Rep. 249, 135 (1994) CrossRefADSGoogle Scholar
  5. V. Zdravkov, A. Sidoremko, G. Obermeier, S. Gsell, M. Schreck, C. Miller, S. Horn, R. Tidecks, L.R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006) CrossRefADSGoogle Scholar
  6. P.E. Cladis, Phys. Rev. Lett. 35, 48 (1975) CrossRefADSGoogle Scholar
  7. P.E. Cladis, R.K. Bogardus, W.B. Daniels, G.N. Taylor, Phys. Rev. Lett. 39, 720 (1977) CrossRefADSGoogle Scholar
  8. P.E. Cladis, R.K. Bogardus, D. Aadsen, Phys. Rev. A 18, 2292 (1978) CrossRefADSGoogle Scholar
  9. L. Liebert, W.B. Daniels, J. Phys. 38, L-333 (1977) Google Scholar
  10. D. Guillon, P.E. Cladis, J. Stamatoff, Phys. Rev. Lett. 41, 1598 (1978); D. Guillon, P.E. Cladis, D. Aadsen, W.B. Daniels, Phys. Rev. A 21, 658 (1980) CrossRefADSGoogle Scholar
  11. G. Pelzl, S. Diele, I. Latif, W. Weissffog, D. Demus, Cryst. Res. Technol. 17, K78 (1982); S. Diele, G. Pelzl, I. Latif, D. Demus, Mol. Cryst. Liq. Cryst. (Lett.) 92, 27 (1983) Google Scholar
  12. C. Destrade, J. Malthete, N.H. Tinh, H. Gasparoux, Phys. Lett. A 78, 82 (1980); N.H. Tinh, J. Malthete, C. Destrade, J. Phys. Lett. 42, L-417 (1981) CrossRefADSGoogle Scholar
  13. K.W. Evans-Lutterodt, J.W. Chung, B.M. Ocko, R.J. Birgeneau, C. Chiang, C.W. Garland, E. Chin, J. Goodby, N.H. Tinh, Phys. Rev. A 36, 1387 (1987) CrossRefADSGoogle Scholar
  14. N.H. Tinh, J. Chim. Phys. 80, 83 (1983); R. Shashidhar, B.R. Ratna, V. Surendranath, V.N. Raja, S.K. Prasad, C. Nagbhushana, J. Phys. Lett. (Paris) 46, L445 (1985) Google Scholar
  15. I. Musevic, B. Zeks, R. Blinc, Th. Rasing, P. Wyder, Phys. Rev. Lett. 48, 192 (1982) CrossRefADSGoogle Scholar
  16. K. Kondo, H. Takejoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L-43 (1983) Google Scholar
  17. H. Takezoe, K. Furuhata, T. Nakagiri, A. Fukuda, E. Kuze, Jpn. J. App. Phys. 17, 1219 (1978) CrossRefGoogle Scholar
  18. Ph. Matrinot-Lagardre, R. Duke, G. Durand, Mol. Cryst. Liq. Cryst. 75, 249 (1981) Google Scholar
  19. D. Pociecha, E. Goreeka, M. Cepic, N. Vaupotic, B. Zeks, D. Kardas, J. Mieczkowski, Phys. Rev. Lett. 86, 3048 (2001) CrossRefADSGoogle Scholar
  20. N.M. Patel, C. Rosenblatt, Y. Yu, Phys. Rev. E 68, 011703 (2003) CrossRefADSGoogle Scholar
  21. D.S. Shanker Rao, S.K. Prasad, V.N. Raja, C.V. Yelamaggad, S.A. Nagamani, Phys. Rev. Lett. 87, 0855041 (2001) Google Scholar
  22. E. de. Miguel, E.M. del Rio, Phys. Rev. Lett. 95, 217802 (2005) CrossRefADSGoogle Scholar
  23. I. Lelidis, G. Durand, J. Phys. II France 6, 1359 (1996) CrossRefGoogle Scholar
  24. A. Srivastava, D. Sa, S. Singh, Eur. Phys. J. E 20, 63 (2006) CrossRefGoogle Scholar
  25. P.K. Mukherjee, H. Pleiner, H.R. Brand, Eur. Phys. J. E 4, 293 (2001) CrossRefGoogle Scholar
  26. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973) Google Scholar
  27. P.K. Mukherjee, M. Deutsch, J. Chem. Phys. 110, 2680 (1999) CrossRefADSGoogle Scholar
  28. S.K. Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976) Google Scholar
  29. Amit Srivastava, D. Sa, S. Singh (to be communicated) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations