The European Physical Journal E

, Volume 18, Issue 4, pp 373–381 | Cite as

Quantitative experimental determination of the Landau-potential of chiral enantiomer doped ferroelectric liquid crystals

Regular Articles

Abstract.

The full Landau potential was determined for a ferroelectric liquid crystal doped with varying concentrations of the chiral dopant R1011 and its enantiomer S1011. A multi-curve fitting procedure using temperature and electric field dependent tilt angle and polarization data was employed to the generalized Landau model of ferroelectric liquid crystals. From this analysis the three Landau coefficients as well as the polarization-tilt coupling parameters were obtained as a function of dopant concentration and configuration. It is shown that the two most varied parameters are those of the first Landau coefficient α and the (chiral) linear polarization-tilt coupling constant C. The effect on the first Landau term is equivalent for the two dopants of opposite handedness indicating its achiral nature, while the effect on the (chiral) bilinear coupling term differs for the R1011 and S1011 dopant, increasing and decreasing the coupling between tilt and polarization respectively. This difference in the bilinear coupling term quantifiably evidences that the R1011 dopant increases and S1011 dopant reduces the inherent chirality in this system.

Keywords

Neural Network Nonlinear Dynamics Varied Parameter Experimental Determination Dopant Concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.B. Meyer, L. Liébert, L. Strzelecki, P. Keller, J. Phys. Lett. (Paris) 36, L69 (1975) Google Scholar
  2. J.W. Goodby, R. Blinc, N.A. Clark, S.T. Lagerwall, M.A. Osipov, S.A. Pikin, T. Sakurai, K. Yoshino, B. Žekš, Ferroelectric Liquid Crystals: Principles, Properties and Applications, edited by G. Taylor, Sect. 7 (Gordon and Breach, Philadelphia, 1991) Google Scholar
  3. S.T. Lagerwall, Ferroelectic and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999) Google Scholar
  4. I. Muševič, R. Blinc, B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000) Google Scholar
  5. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980) Google Scholar
  6. B. Žekš, Mol. Cryst. Liq. Cryst. 114, 259 (1984) Google Scholar
  7. T. Carlsson, B. Žekš, A. Levstik, C. Filipic, I. Levstik, R. Blinc, Phys. Rev. A 36, 1484 (1987) Google Scholar
  8. F. Giesselmann, P. Zugenmaier, Phys. Rev. E 52, 1762 (1995) Google Scholar
  9. C.C. Huang, J.M. Viner, Phys. Rev. A 25, 3385 (1982) Google Scholar
  10. R.J. Birgeneau, C.W. Garland, A.R. Kortan, J.D. Litster, M. Meichle, B.M. Ocko, C. Rosenblatt, L.J. Yu, J. Goodby, Phys. Rev. A 27, R1251 (1983) Google Scholar
  11. S. Garoff, R.B. Meyer, Phys. Rev. Lett. 38, 848 (1977) Google Scholar
  12. T. Carlsson, I. Dahl, Mol. Cryst. Liq. Cryst. 95, 373 (1983) Google Scholar
  13. S. Dumrongrattana, C.C. Huang, G. Nounesis, S.C. Lieu, J.M. Viner, Phys. Rev A. 34, 5010 (1986) Google Scholar
  14. C.C. Huang, S. Dumrongrattana, Phys. Rev. A 34, 5020 (1986) Google Scholar
  15. Ch. Bahr, G. Heppke, B. Sabaschus, Ferroelectrics 84, 103 (1988) Google Scholar
  16. F. Giesselmann, A. Heimann, P. Zugenmaier, Ferroelectrics 200, 237 (1997) Google Scholar
  17. F. Giesselmann, Habilitation Thesis, University of Clausthal, Germany (1999) Google Scholar
  18. C. Bahr, G. Heppke, Liq. Cryst. 2, 825 (1987) Google Scholar
  19. K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L661 (1983) Google Scholar
  20. B. Žekš, C. Filipic, T. Carlsson, Phys. Scr., T 25, 362 (1989) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Physics and Astronomy, University of Manchester, Schuster LaboratoryManchesterUK

Personalised recommendations