The European Physical Journal E

, Volume 16, Issue 2, pp 147–158 | Cite as

Viscoelasticity of a protein monolayer from anisotropic surface pressure measurements

Regular Articles


We present a method to completely characterize the viscoelasticity of Langmuir monolayers. In contrast to existing techniques, both the compression and shear moduli are determined at the same time, in a single experiment and with a standard apparatus. This approach relies on the measurement of anisotropy in the surface pressure: the tension is measured in orientations perpendicular and parallel to the compression direction. We apply this technique to the study of β-lactoglobulin spread monolayers, a system that has been shown to develop a shear modulus at high concentration. β-lactoglobulin monolayers are interesting both because of their importance in food science and because they exhibit universally slow dynamical behavior that is not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response and also provide a complex shear modulus, emerging above a critical concentration. We are able to describe how each of the dynamical response moduli is related to the surface concentration and to the equilibrium osmotic pressure.


Shear Modulus Osmotic Pressure Surface Pressure Soft Matter Critical Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Möbius, R. Miller, Proteins at liquid interfaces (Elsevier, Amsterdam, 1998) Google Scholar
  2. M.A. Bos, T. van Vliet, Adv. Colloid and Interface Sci. 91, 437 (2001)Google Scholar
  3. B.S. Murray, Current Opinion in Colloid & Interface Sci. 7, 426 (2002)Google Scholar
  4. F. MacRitchie, Adv. Colloid and Interface Sci. 25, 341 (1986)Google Scholar
  5. P. Cicuta, I. Hopkinson, J. Chem. Phys. 114, 8659 (2001)Google Scholar
  6. P. Cicuta, I. Hopkinson, Europhys. Lett. 68, 65 (2004)Google Scholar
  7. F. Monroy, H.M. Hilles, F. Ortega, R.G. Rubio, Phys. Rev. Lett. 91, 268302 (2003)Google Scholar
  8. H.M. Hilles, F. Ortega, R.G. Rubio, F. Monroy, Phys. Rev. Lett. 92, 255503 (2004)Google Scholar
  9. R.A.L. Jones, R.W. Richards, Polymers at Surfaces and Interfaces (Cambridge Univ. Press, Cambridge (UK), 1999) Google Scholar
  10. R. Miller, R. Wüstneck, J. Krägel, G. Kretzschmar, Colloids and Surfaces A 111, 75 (1996)Google Scholar
  11. M. Joly, Rheological properties of monomolecular films, in Surface and Colloid Science, Vol. 5, edited by E. Matijević (Wiley, New York, 1969) Google Scholar
  12. D.M.A. Buzza, C.-Y.D. Lu, M.E. Cates, J. Phys. II France 5, 37 (1995)Google Scholar
  13. J. Benjamins, J.A. de Feijter, M.T.A. Evans, D.E. Graham, M.C. Phillips, Faraday Discuss. 59, 218 (1975)Google Scholar
  14. P. Cicuta, E.J. Stancik, G.G. Fuller, Phys. Rev. Lett. 90, 236101 (2003)Google Scholar
  15. G.T. Gavranovic, G.G. Fuller, to appear Faraday Discuss. 129, 1 (2005) Google Scholar
  16. A. Martin, M.A. Bos, M. Cohen Stuart, T. van Vliet, Langmuir 18, 1238 (2002)Google Scholar
  17. C.F. Brooks, G.G. Fuller, C.W. Curtis, C.R. Robertson, Langmuir 15, 2450 (1999)Google Scholar
  18. C. Barentin, C. Ybert, J.-M. di Meglio, J.-F. Joanny, J. Fluid Mech. 397, 331 (1999)CrossRefMATHGoogle Scholar
  19. J.T. Petkov, T.D. Gurkov, B.E. Campbell, R.P. Borwankar, Langmuir 16, 3703 (2000)Google Scholar
  20. G.L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces (Wiley, New York, 1960) Google Scholar
  21. D.E. Graham, M.C. Phillips, J. Coll. Interface Sci. 76, 227 (1980)Google Scholar
  22. J. Lucassen, M. van den Tempel, J. Coll. Interface Sci. 41, 491 (1972)Google Scholar
  23. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979) Google Scholar
  24. R. Vilanove, F. Rondelez, Phys. Rev. Lett. 45, 1502 (1980)Google Scholar
  25. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 75, 2770 (1995)CrossRefGoogle Scholar
  26. M.J. Ridout, A.R. Mackie, P.J. Wilde, J. Agric. Food Chem. 52, 3930 (2004)Google Scholar
  27. E.M. Freer, K.S. Yim, G.G. Fuller, C.J. Radke, J. Phys. Chem. B 108, 3835 (2004)Google Scholar
  28. P. Cicuta, I. Hopkinson, Colloids and Surfaces A: Physicochem. Eng. Aspects 233, 97 (2004) Google Scholar
  29. F. Sciortino, Nature Materials 1, 145 (2002)Google Scholar
  30. L. Santen, W. Krauth, Nature 405, 550 (2000)Google Scholar
  31. B.S. Murray, Colloids and Surfaces A: Physicochem. and Eng. Aspects 125, 73 (1997)Google Scholar
  32. E.H. Lucassen-Reynders, V.B. Fainerman, R. Miller, J. Phys. Chem. B 108, 9173 (2004)Google Scholar
  33. E. Dickinson, Y. Matsumura, Colloids Surf. B: Biointerfaces 3, 1 (1994)Google Scholar
  34. R.J. Green, I. Hopkinson, R.A.L. Jones, Langmuir 15, 5102 (1999)Google Scholar
  35. C.M. Wijmans, E. Dickinson, Langmuir 14, 7278 (1998)Google Scholar
  36. F. Monroy, F. Ortega, R.G. Rubio, Eur. Phys. J. B 13, 745 (2000)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Nanoscience Center, University of CambridgeCambridgeUK
  2. 2.Cavendish Laboratory, University of CambridgeCambridgeUK

Personalised recommendations