The European Physical Journal E

, Volume 16, Issue 1, pp 49–56 | Cite as

Nanoscopic surface patterns of diblock copolymer thin films

  • Junchai Zhao
  • Shizhe Tian
  • Qiang Wang
  • Xiaobo Liu
  • Shichun Jiang
  • Xiangling Ji
  • Lijia An
  • Bingzheng Jiang
Regular Articles

Abstract.

The surface topography of thin diblock copolymer films is studied by atomic force microscopy (AFM). With AFM an island-to-ribbon transition is observed for symmetric polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) on mica with increasing solution concentration. Our study also demonstrates how the formation of the pattern strongly depends on the copolymer composition based on the volume fraction. The substrate and solvent used both have great effects on the morphology of the thin films. Only by using highly polar substrate (mica), can we gain regular pattern. The reason why the regular islands cannot be obtained with symmetric PS-b-P4VP on graphite is also explained. On mica using nonselective and selective solvents, a rather regular pattern can be obtained. The difference is only in the solution concentration for forming regular patterns.

Keywords

Thin Film Graphite Atomic Force Microscopy Solution Concentration Surface Topography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Kallogg, D.G. Walton, A.M. Mayes, P. Lambooy, T.P. Rassel, P.D. Callagher, S.K. Satija, Phys. Rev. Lett. 76, 2503 (1996)ADSGoogle Scholar
  2. T.L. Morkved, M. Lu, A.M. Urbas, E.E. Ehrichs, H.M. Jaeger, P. Mansky, T.P. Russell, Science 273, 931 (1996)ADSGoogle Scholar
  3. D.G. Walton, G.J. Kellogg, A.M. Mayes, P. Lambooy, T.P. Russell, Macromolecules 27, 6225 (1994)Google Scholar
  4. C.S. Henkee, E.L. Thomas, L.J. Fetters, J. Mater. Sci. 23, 1685 (1988)Google Scholar
  5. T.L. Morkved, H.M. Jaeger, Europhys. Lett. 40, 643 (1997)ADSGoogle Scholar
  6. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I.C. Wang, G.M. Whitesides, D.E. Ingber, Science 264, 696 (1994)ADSGoogle Scholar
  7. J.P. Spatz, S. Sheiko, M. Moller, Adv. Mater. 8, 513 (1996)Google Scholar
  8. J.P. Spatz, M. Moller, M. Noeske, R.J. Behm, M. Pietralla, Macromolecules 30, 3874 (1997)Google Scholar
  9. J.C. Meiners, A. Quintel-Ritzi, J. Mlynek, H. Elbs, G. Krausch, Macromolecules 30, 4945 (1997) Google Scholar
  10. J.P. Spatz, A. Roescher, M. Moller, Adv. Mater. 8, 337 (1996)Google Scholar
  11. J.P. Spatz, P. Eibeck, S. Mossmer, M. Moller, T. Herzog, P. Ziemann, Adv. Mater. 10, 849 (1998)Google Scholar
  12. K. Fukunaga, H. Elbs, G. Krausch, Langmuir 16, 3774 (2000)Google Scholar
  13. F.S. Bates, G.H. Fredrickson, Ann. Rev. Mater. Sci. 41, 425 (1990)Google Scholar
  14. G. Krausch, Mater. Sci. Eng. R 14, 1 (1995)Google Scholar
  15. J. Zhu, A. Eisenberg, R.B. Lennox, Macromolecules 25, 6547 (1992); J. Zhu, A. Eisenberg, R.B. Lennox, Macromolecules 25, 6556 (1992); J. Zhu, A. Eisenberg, R.B. Lennox, Langmuir 7, 1579 (1991)Google Scholar
  16. Z. Li, W. Zhao, M.H. Rafailovich, J. Sokolov, K. Khougaz, B. Lennox, A. Eisenberg, G. Krausch, J. Am. Chem. Soc. 118, 10892 (1996)Google Scholar
  17. J.P. Spatz, P. Eibeck, S. Mössmer, M. Möller, E.Y. Kramarenko, P.G. Khalatur, I.I. Potemkin, A.R. Khokhlov, R.G. Winkler, P. Reineker, Macromolecules 33, 150 (2000)Google Scholar
  18. E.Y. Kramarenko, I.I. Potemkin, A.R. Khokhlov, R.G. Winkler, P. Reineker, Macromolecules 32, 3495 (1999)Google Scholar
  19. I.I. Potemkin, E.Y. Kramarenko, A.R. Khokhlov, R.G. Winkler, P. Reineker, P. Eibeck, J.P. Spatz, M. Moller, Langmuir 15, 7290 (1999)Google Scholar
  20. S. Zheng, W. Zhao, M.H. Rafailovich, J. Sokolov, S.A. Schwarz, R.B. Lennox, A. Eisenberg, Bull. Am. Phys. Soc. 39, 418 (1994) Google Scholar
  21. S.S. Sheiko, Adv. Polym. Sci. 151, 61 (2000)CrossRefGoogle Scholar
  22. S.N. Magonov, N.A. Yerina, Languir 19, 500 (2003) Google Scholar
  23. S.I. Park, C.F. Quate, Appl. Phys. Lett. 48, 112 (1986)ADSGoogle Scholar
  24. R.D. Peters, X.M. Yang, T.K. Kim, B.H. Sohn, P.F. Nealey, Langmuir 16, 4625 (2000)Google Scholar
  25. B.H. Sohn, B.H. Seo, Chem. Mater. 13, 1752 (2001)Google Scholar
  26. Y. Funaki, K. Kumano, T. Nakao, H. Jinnai, H. Yoshida, K. Kimishima, T. Tsutsumi, Y. Hirokawa, T. Hashimoto, Polymer 40, 7147 (1999)Google Scholar
  27. ([SEE TEXT]) Polymer Handbook, 4th edn, edited by J. Brandrup, E.H. Immergut, E.A. Grulke (New York, Wiley, 1999) (2) S.W. Kuo, C.L. Lin, F.C. Chang, Polymer 43, 3943 (2002)Google Scholar
  28. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Langmuir 8, 3183 (1992)Google Scholar
  29. J.P. Spatz, S. Sheiko, M. Moller, Macromolecules 29, 3220 (1996)Google Scholar
  30. J.C. Meiners, A. Ritzi, M.H. Rafailovich, J. Sokolov, J. Mlynek, G. Krausch, Appl. Phys. A 61, 519 (1995)ADSCrossRefGoogle Scholar
  31. J.C. Meiners, H. Elbs, A. Ritzi, J. Mlynek, G. Krausch, J. Appl. Phys. 80, 2224 (1996)ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • Junchai Zhao
    • 1
  • Shizhe Tian
    • 1
  • Qiang Wang
    • 1
  • Xiaobo Liu
    • 1
  • Shichun Jiang
    • 1
  • Xiangling Ji
    • 1
  • Lijia An
    • 1
  • Bingzheng Jiang
    • 1
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunP.R. China

Personalised recommendations