Advertisement

The European Physical Journal E

, Volume 12, Issue 4, pp 565–572 | Cite as

Structure and thermodynamics of associating rods solutions

  • M. S. Yeom
  • A. V. Ermoshkin
  • M. O. de la Cruz
Article
  • 40 Downloads

Abstract.

Physical gelation in rod-like associating polymer solutions is analyzed by computer simulations and by mean field models. The structural gelation (SG) transition is determined by a rapid change in the cluster weight average. The analytically determined SG transition is in good agreement with the simulation results. At low temperatures we observe a peak in the heat capacity, which maximum is associated with phase segregation. The SG transition is sensitive to the number of associating groups per rod but nearly insensitive to the spatial distribution of associating groups around the rods. Phase segregation is strongly dependent on both the number and distribution of associating groups per rod. We find negligible overall nematic order near the SG transition and only partial local nematic order of the clusters at the phase segregation transitions.

Keywords

Polymer Spatial Distribution Heat Capacity Weight Average Computer Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)CrossRefGoogle Scholar
  2. 2.
    S.M. Yu, C.M. Soto, D.A. Tirrel, J. Am. Chem. Soc. 122, 6552 (2000); T.H. Bayburt, Y.L. Grinkova, S.G. Sligar, Nanoletters 2, 853 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949); T. Odijk, Macromolecules 19, 2313 (1986); G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992); J.W. Winters, T. Odijk, P. van der Schoot, Phys. Rev. E 63, 011501 (2001)Google Scholar
  4. 4.
    P.G. Bolhuis, A. Stroobants, D. Frenkel, H.N.W. Lekkerkerker, J. Chem. Phys. 107, 1551 (1997)CrossRefGoogle Scholar
  5. 5.
    A. Halperin, J. Chem. Phys. 85, 1081 (1986); A.O. Weist, E.D. Glandt, J. Chem. Phys. 101, 5167 (1994); E. Jimenez-Regalado, J. Selb, F. Candau, Macromolecules 33, 8720 (2000); F. Clement, A. Johner, J.-F. Joanny, A.N. Semenov, Macromolecules 33, 6148 (2000); R.J.J. Jongschaap, R.H.W. Wientjes, M.H.G. Duits, J. Mellema, Macromolecules 34, 1031 (2001)CrossRefGoogle Scholar
  6. 6.
    S.K. Kumar, A.Z. Panagiotopoulos, Phys. Rev. Lett. 82, 5060 (1999)CrossRefGoogle Scholar
  7. 7.
    A.H. Chowdhury, P.S. Russo, J. Chem. Phys. 92, 5744 (1990)CrossRefGoogle Scholar
  8. 8.
    I.Ya. Erukhimovich, JETP 81, 553 (1995)Google Scholar
  9. 9.
    A.N. Semenov, M. Rubinstein, Macromolecules 31, 1373 (1998)CrossRefGoogle Scholar
  10. 10.
    A.V. Ermoshkin, I. Erukhimovich, J. Chem. Phys. 110, 1781 (1999)CrossRefGoogle Scholar
  11. 11.
    I. Erukhimovich, M.V. Thamm, A.V. Ermoshkin, Macromolecules 34, 5653 (2001)CrossRefGoogle Scholar
  12. 12.
    S.K. Kumar, J.F. Douglas, Phys. Rev. Lett. 87, 188301 (2001)CrossRefGoogle Scholar
  13. 13.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979) (see also L. Rogovina, G. Slonimski, Russian Chem. Rev. 43, 503 (1974))Google Scholar
  14. 14.
    A.M. Puertas, M. Fuchs, A. Cates, Phys. Rev. Lett. 88, 098301-1 (2002)CrossRefGoogle Scholar
  15. 15.
    B.-Y. Ha, A.J. Liu, Europhys. Lett. 46, 624 (1999); M. Stevens, Phys. Rev. Lett. 82, 101 (1999)CrossRefGoogle Scholar
  16. 16.
    W.R. Romano, M.A. Ratner, S.H. Carr, Solid State Commun. 75, 25 (1990); K. Beltios, S.H. Carr, J. Macr. Sc. Phys. B 29, 71 (1990)CrossRefGoogle Scholar
  17. 17.
    J.D. McGhee, P.H. von Hippel, J. Mol. Biol. 86, 469 (1974)Google Scholar
  18. 18.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Washington, DC 1992)Google Scholar
  19. 19.
    A.N. Semenov, I.A. Nyrkova, M.E. Cates, Macromolecules 28, (23), 7879 (1995)Google Scholar
  20. 20.
    K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics; An Introduction Springer Series in Solid state Science, Vol. 80 (Springer-Verlag, Heidelberg 1997)Google Scholar
  21. 21.
    D. Bedrov, G.D. Smith, J.F. Douglas Europhys. Lett. 59, 384 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. S. Yeom
    • 1
  • A. V. Ermoshkin
    • 1
  • M. O. de la Cruz
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations