Impurity in a Fermi gas under non-Hermitian spin–orbit coupling

Abstract

We study the fate of an impurity in a two-component, non-interacting Fermi gas under a non-Hermitian spin–orbit coupling (SOC) which is generated by dissipative Raman lasers. While SOC mixes the two spin species in the Fermi gas thus modifies the single-particle dispersions, we consider the case where the impurity only interacts with one of the spin species. As a result, spectral properties of the impurity constitute an ideal probe to the dissipative Fermi gas in the background. In particular, we show that dissipation destabilizes polarons in favor of molecular formation, consistent with previous few-body studies. The dissipative nature of the Fermi gas further leads to broadened peaks in the inverse radio-frequency spectra for both the attractive and repulsive polaron branches, which could serve as signals for experimental observation. Our results provide an exemplary scenario where the interplay of non-Hermiticity and interaction can be probed.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. 1.

    H.J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993)

    ADS  Article  Google Scholar 

  2. 2.

    V.V. Konotop, J. Yang, D.A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Nat. Phys. 14, 11 (2017)

    Article  Google Scholar 

  4. 4.

    T.E. Lee, Phys. Rev. Lett. 16, 133903 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    F.K. Kunst, E. Edvardsson, J.C. Budich, E.J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    S. Yao, Z. Wang, Phy. Rev. Lett. 121, 086803 (2018)

    ADS  Article  Google Scholar 

  7. 7.

    S. Yao, F. Song, Z. Wang, Phys. Rev. Lett. 121, 136802 (2018)

    ADS  Article  Google Scholar 

  8. 8.

    K. Yokomizo, S. Murakami, Phys. Rev. Lett. 123, 066404 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    C.H. Lee, R. Thomale, Phys. Rev. B 99, 201103(R) (2019)

    ADS  Article  Google Scholar 

  10. 10.

    A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais, arXiv:1907.11619 (2019)

  11. 11.

    L. Xiao, T.-S. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, P. Xue, Nat. Phys. 16, 761 (2020)

    Article  Google Scholar 

  12. 12.

    S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, A. Szameit, Science 368, 311 (2020)

    ADS  Article  Google Scholar 

  13. 13.

    N. Okuma, K. Kawabata, K. Shiozaki, M. Sato, Phys. Rev. Lett. 124, 086801 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    K. Zhang, Z. Yang, C. Fang, Phys. Rev. Lett. 125, 126402 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    N. Syassen, D.M. Bauer, M. Lettner, T. Volz, D. Dietze, J.J. Garcia-Ripoll, J.I. Cirac, G. Rempe, S. Dürr, Science 320, 1329 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, Y. Takahashi, Sci. Adv. 3, e1701513 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    T. Tomita, S. Nakajima, Y. Takasu, Y. Takahashi, Phys. Rev. A 99, 031601(R) (2019)

    ADS  Article  Google Scholar 

  18. 18.

    A. Ghatak, T. Das, Phys. Rev. B 97, 014512 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    L. Zhou, X. Cui, iScience 14, 257 (2019)

  20. 20.

    K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda, N. Kawakami, Phys. Rev. Lett. 123, 123601 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    V.A. Brazhnyi, V.V. Konotop, V.M. Perez-García, H. Ott, Phys. Rev. Lett. 102, 144101 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    D.A. Zezyulin, V.V. Konotop, G. Barontini, H. Ott, Phys. Rev. Lett. 109, 020405 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    H. Cartarius, G. Wunner, Phys. Rev. A 86, 013612 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    W.D. Heiss, H. Cartarius, G. Wunner, J. Main, J. Phys. A: Math. Theor. 46, 275307 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    D.A. Zezyulin, V.V. Konotop, Phys. Rev. A 94, 043853 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Ashida, S. Furukawa, M. Ueda, Phys. Rev. A 94, 053615 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    L. Pan, S. Chen, X. Cui, Phys. Rev. A 99, 011601(R) (2019)

    ADS  Article  Google Scholar 

  28. 28.

    L. Pan, S. Chen, X. Cui, Phys. Rev. A ibid, Phys. Rev. A 99, 063616 (2019)

  29. 29.

    Z. Zhou, Z. Yu, Phys. Rev. A 99, 043412 (2019)

    ADS  Article  Google Scholar 

  30. 30.

    M. Nakagawa, N. Tsuji, N. Kawakami, M. Ueda, Phys. Rev. Lett. 124, 147203 (2020)

    ADS  Article  Google Scholar 

  31. 31.

    L. Pan, X. Chen, Y. Chen, H. Zhai, Nat. Phys. 16, 767–771 (2020)

    Article  Google Scholar 

  32. 32.

    L. Zhou, W. Yi, X. Cui, Phys. Rev. A 102, 043310 (2020)

    ADS  Article  Google Scholar 

  33. 33.

    G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, H. Ott, Phys. Rev. Lett. 110, 035302 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    R. Labouvie, B. Santra, S. Heun, H. Ott, Phys. Rev. Lett. 116, 235302 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    A. Müllers, B. Santra, C. Baals, J. Jiang, J. Benary, R. Labouvie, D. A. Zezyulin, V. V. Konotop, H. Ott, Sci. Adv. 4, eaat6539 (2018)

  36. 36.

    R. Bouganne, M. B. Aguilera, A. Ghermaoui, J. Beugnon, F. Gerbier, Nat. Phys. (2019)

  37. 37.

    R. Bouganne, M.B. Aguilera, A. Ghermaoui, J. Beugnon, F. Gerbier, Nat. Phys. 16, 21–25 (2020)

    Article  Google Scholar 

  38. 38.

    J. Li, A.K. Harter, J. Liu, L. de Melo, Y.N. Joglekar, L. Luo, Nat. Commun. 10, 855 (2019)

    ADS  Article  Google Scholar 

  39. 39.

    S. Lapp, J. Ang’ong’a, F. Alex An, B. Gadway, New. J. Phys. 21, 045006 (2019)

  40. 40.

    L. Zhou, X. Cui, W. Yi, Phys. Rev. Lett. 112, 195301 (2014)

    ADS  Article  Google Scholar 

  41. 41.

    F. Chevy, C. Mora, Rep. Prog. Phys. 73, 11 (2010)

    Article  Google Scholar 

  42. 42.

    P. Massignan, M. Zaccanti, G.M. Bruun, Rep. Prog. Phys. 77, 034401 (2014)

    ADS  Article  Google Scholar 

Download references

We thank Xiaoling Cui, Jing Zhou, and Wei Yi for helpful discussions. This work has been supported by the Natural Science Foundation of China (Grant No. 11974331).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-Zheng Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, JZ. Impurity in a Fermi gas under non-Hermitian spin–orbit coupling. Eur. Phys. J. D 75, 39 (2021). https://doi.org/10.1140/epjd/s10053-021-00049-z

Download citation