Abstract
Subject of this study is a theoretical investigation of the channeling of high energy protons with the radially deformed triple-wall carbon nanotubes (TWNTs). Specifically, we chose a proton energy of 1 GeV and perfect and the radially deformed TWNTs (15, 0)@(10, 0)@(5, 0) of radial strengths \(\eta = 0.1, 0.2\) and 0.3. We presented the channeling potential within the perfect and deformed TWNTs and corresponding spatial and angular distributions of channeled protons. We treated the problem relativistically. We also analyzed the case where proton beams enter nanotube under different incidence angles. We analyzed two cases \(L = 1\) and 5 \(\mu m\). We also varied the value of incidence angle of proton beam and calculated the efficiency of nanotube channeling. This is the first time that we presented spatial and angular distributions of channeled protons with radially deformed TWNTs with angular effect of proton beam, and also, for the first time we presented their channeling efficiency. Our results show that the spatial and angular distributions depend strongly on the nanotube lengths, incident angle of the proton beam, and on the level of radial deformation of nanotube. Multi-wall nanotubes (MWNTs) are better candidates for realization of ion guiding than single-wall nanotubes (SWNTs) because it is easier to produce them straight. Also, deformation of the nanotube and the incident proton beam under some initial angle with respect to the nanotube axes represent realistic situation. That is why we believe that these results may be useful for production and guiding of nanosized ion beams by nanotubes.
Graphic abstract

This is a preview of subscription content, access via your institution.









Data Availability Statement
This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All relevant data are in the paper.].
References
- 1.
S. Iijima, Nature 354, 56 (1991)
- 2.
V.V. Klimov, V.S. Letokhov, Phys. Lett. A 222, 424 (1996)
- 3.
G.V. Dedkov, Nucl. Instrum. Method Phys. Res. B 143, 584 (1998)
- 4.
N.K. Zhevago, V.I. Glebov, Phys. Lett. A 250, 360 (1998)
- 5.
L.A. Gevorgian, K.A. Ispirian, R.K. Ispirian, Nucl. Instrum. Method Phys. Res. B 145, 155 (1998)
- 6.
A.A. Greenenko, N.F. Shulga, Nucl. Instrum. Method Phys. Res. B 205, 767 (2003)
- 7.
A.V. Krasheninnikov, K. Nordlund, Phys. Rev. B 71, 245408 (2005)
- 8.
S. Bellucci, V.M. Biryukov, A. Cordelli, Phys. Lett. B 608, 53 (2005)
- 9.
X. Artru, S.P. Fomin, N.F. Shulga, K.A. Ispirian, N.K. Zhevago, Phys. Rep. 412, 89 (2005)
- 10.
S. Petrović, D. Borka, N. Nešković, Eur. Phys. J. B 44, 41 (2005)
- 11.
D. Borka, S. Petrović, N. Nešković, Phys. Lett. A 354, 457 (2006)
- 12.
S.I. Matyukhin, K.Y. Frolenkov, Tech. Phys. Lett. 33(1), 58 (2007)
- 13.
C.S. Moura, L. Amaral, Carbon 45, 1802 (2007)
- 14.
Z.L. Mišković, Radiat. Eff. Def. Solids 162, 185 (2007)
- 15.
S.I. Matyukhin, Tech. Phys. Lett. 35, 318 (2009)
- 16.
S. Petrović, D. Borka, I. Telečki, N. Nešković, Nucl. Instrum. Method Phys. B 267(14), 2365 (2009)
- 17.
D. Borka, S. Petrović, N. Nešković, Science Publishers, Series: Nanotechnology Science and Technology, ISBN 978-1-61122-050-6, New York (2011), pp. 1–78
- 18.
D. Borka, V. Lukić, J. Timko, V. Borka Jovanović, Nucl. Instrum. Method Phys. Res. B 279, 169 (2012)
- 19.
V.A. Aleksandrov, G.M. Filippov, J. Surf. Invest. X-ray Synchrot. NeutronTech. 6, 338 (2012)
- 20.
A. Babaev, S.B. Dabagov, Eur. Phys. J. Plus 127, 62 (2012)
- 21.
Y.-Y. Zhang, J.-Z. Sun, Y.-H. Song, Z.L. Mišković, Y.-N. Wang, Carbon 71, 196 (2014)
- 22.
A. Karabarbounis, S. Sarros, Ch. Trikalinos, Nucl. Instrum. Method Phys. Res. B 355, 316 (2015)
- 23.
A.S. Sabirov, I.V. Lysova, J. Surf. Invest.X-ray Synchrot. Neutron Tech. 10, 261 (2016)
- 24.
A.V. Stepanov, G.M. Filippov, Nucl. Instrum. Method Phys. Res. B 402, 263 (2017)
- 25.
A.S. Sabirov, J. Surf. Invest. X-ray Synchrot. Neutron Tech. 12, 811 (2018)
- 26.
Z. Zhu, D. Zhu, R. Lu, Z. Xu, W. Zhang, H. Xia, Proceedings of the International Conference on Charged and Neutral Particles Channeling Phenomena (Frascati, Italy), (2005), vol. 5974 (Bellingham, Washington: SPIE) pp. 1–13
- 27.
G. Chai, H. Heinrich, L. Chow, T. Schenkel, Appl. Phys. Lett. 91, 103101 (2007)
- 28.
M. Hasegawa, K. Nishidate, Phys. Rev. B 74, 115401 (2006)
- 29.
A.N. Imtani, V.K. Jindal, Phys. Rev. B 76, 195447 (2007)
- 30.
Y.V. Shtogun, L.M. Woods, J. Phys. Chem. C 113, 4792 (2009)
- 31.
B. Kan, J. Ding, N. Yuan, J. Wang, Z. Chen, X. Chen, Nanoscale Res. Lett. 5, 1144 (2010)
- 32.
M.K. Abu-Assy, M.S. Soliman, Nucl. Instrum. Method Phys. Res. B 384, 93 (2016)
- 33.
V. Borka Jovanović, D. Borka, S.M.D. Galijaš, Phys. Lett. A 381, 1687 (2017)
- 34.
D. Borka, V. Borka Jovanović, Atoms 7, 88 (2019)
- 35.
D. Borka, S.M.D. Galijaš, Roman. Rep. Phys. 71, 209 (2019)
- 36.
D. Borka, S. Petrović, N. Nešković, D.J. Mowbray, Z.L. Mišković, Phys. Rev. A 73, 062902 (2006)
- 37.
D. Borka, D.J. Mowbray, Z.L. Mišković, S. Petrović, N. Nešković, Phys. Rev. A 77, 032903 (2008)
- 38.
G. Molière, Z. Naturforsch, A 2, 133 (1947)
- 39.
J.K. Lindhard, D.V. Selsk, Mat.-Fys. Medd. 34(14), 1 (1965)
- 40.
D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974)
- 41.
R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2001)
- 42.
D. Borka, D.J. Mowbray, Z.L. Mišković, S. Petrović, N. Nešković, New J. Phys. 12, 043021 (2010)
- 43.
D. Borka, V. Lukić, J. Timko, V. Borka Jovanović, Nucl. Instrum. Method Phys. Res. B 279, 198 (2012)
Acknowledgements
This work is supported by Ministry of Education, Science and Technological Development of the Republic of Serbia.
Author information
Affiliations
Contributions
The both coauthors participated in calculation and discussion of obtained results. The authors contributed equally to this work.
Corresponding author
Rights and permissions
About this article
Cite this article
Borka, D., Borka Jovanović, V. Guiding of protons through radially deformed triple-wall carbon nanotubes. Eur. Phys. J. D 75, 50 (2021). https://doi.org/10.1140/epjd/s10053-021-00039-1
Received:
Accepted:
Published: