Guiding of protons through radially deformed triple-wall carbon nanotubes

Abstract

Subject of this study is a theoretical investigation of the channeling of high energy protons with the radially deformed triple-wall carbon nanotubes (TWNTs). Specifically, we chose a proton energy of 1 GeV and perfect and the radially deformed TWNTs (15, 0)@(10, 0)@(5, 0) of radial strengths \(\eta = 0.1, 0.2\) and 0.3. We presented the channeling potential within the perfect and deformed TWNTs and corresponding spatial and angular distributions of channeled protons. We treated the problem relativistically. We also analyzed the case where proton beams enter nanotube under different incidence angles. We analyzed two cases \(L = 1\) and 5 \(\mu m\). We also varied the value of incidence angle of proton beam and calculated the efficiency of nanotube channeling. This is the first time that we presented spatial and angular distributions of channeled protons with radially deformed TWNTs with angular effect of proton beam, and also, for the first time we presented their channeling efficiency. Our results show that the spatial and angular distributions depend strongly on the nanotube lengths, incident angle of the proton beam, and on the level of radial deformation of nanotube. Multi-wall nanotubes (MWNTs) are better candidates for realization of ion guiding than single-wall nanotubes (SWNTs) because it is easier to produce them straight. Also, deformation of the nanotube and the incident proton beam under some initial angle with respect to the nanotube axes represent realistic situation. That is why we believe that these results may be useful for production and guiding of nanosized ion beams by nanotubes.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All relevant data are in the paper.].

References

  1. 1.

    S. Iijima, Nature 354, 56 (1991)

    ADS  Article  Google Scholar 

  2. 2.

    V.V. Klimov, V.S. Letokhov, Phys. Lett. A 222, 424 (1996)

    ADS  Article  Google Scholar 

  3. 3.

    G.V. Dedkov, Nucl. Instrum. Method Phys. Res. B 143, 584 (1998)

    ADS  Article  Google Scholar 

  4. 4.

    N.K. Zhevago, V.I. Glebov, Phys. Lett. A 250, 360 (1998)

    ADS  Article  Google Scholar 

  5. 5.

    L.A. Gevorgian, K.A. Ispirian, R.K. Ispirian, Nucl. Instrum. Method Phys. Res. B 145, 155 (1998)

    ADS  Article  Google Scholar 

  6. 6.

    A.A. Greenenko, N.F. Shulga, Nucl. Instrum. Method Phys. Res. B 205, 767 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    A.V. Krasheninnikov, K. Nordlund, Phys. Rev. B 71, 245408 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    S. Bellucci, V.M. Biryukov, A. Cordelli, Phys. Lett. B 608, 53 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    X. Artru, S.P. Fomin, N.F. Shulga, K.A. Ispirian, N.K. Zhevago, Phys. Rep. 412, 89 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    S. Petrović, D. Borka, N. Nešković, Eur. Phys. J. B 44, 41 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    D. Borka, S. Petrović, N. Nešković, Phys. Lett. A 354, 457 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    S.I. Matyukhin, K.Y. Frolenkov, Tech. Phys. Lett. 33(1), 58 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    C.S. Moura, L. Amaral, Carbon 45, 1802 (2007)

    Article  Google Scholar 

  14. 14.

    Z.L. Mišković, Radiat. Eff. Def. Solids 162, 185 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    S.I. Matyukhin, Tech. Phys. Lett. 35, 318 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    S. Petrović, D. Borka, I. Telečki, N. Nešković, Nucl. Instrum. Method Phys. B 267(14), 2365 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    D. Borka, S. Petrović, N. Nešković, Science Publishers, Series: Nanotechnology Science and Technology, ISBN 978-1-61122-050-6, New York (2011), pp. 1–78

  18. 18.

    D. Borka, V. Lukić, J. Timko, V. Borka Jovanović, Nucl. Instrum. Method Phys. Res. B 279, 169 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    V.A. Aleksandrov, G.M. Filippov, J. Surf. Invest. X-ray Synchrot. NeutronTech. 6, 338 (2012)

    Article  Google Scholar 

  20. 20.

    A. Babaev, S.B. Dabagov, Eur. Phys. J. Plus 127, 62 (2012)

    Article  Google Scholar 

  21. 21.

    Y.-Y. Zhang, J.-Z. Sun, Y.-H. Song, Z.L. Mišković, Y.-N. Wang, Carbon 71, 196 (2014)

    Article  Google Scholar 

  22. 22.

    A. Karabarbounis, S. Sarros, Ch. Trikalinos, Nucl. Instrum. Method Phys. Res. B 355, 316 (2015)

    ADS  Article  Google Scholar 

  23. 23.

    A.S. Sabirov, I.V. Lysova, J. Surf. Invest.X-ray Synchrot. Neutron Tech. 10, 261 (2016)

    Article  Google Scholar 

  24. 24.

    A.V. Stepanov, G.M. Filippov, Nucl. Instrum. Method Phys. Res. B 402, 263 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    A.S. Sabirov, J. Surf. Invest. X-ray Synchrot. Neutron Tech. 12, 811 (2018)

    Article  Google Scholar 

  26. 26.

    Z. Zhu, D. Zhu, R. Lu, Z. Xu, W. Zhang, H. Xia, Proceedings of the International Conference on Charged and Neutral Particles Channeling Phenomena (Frascati, Italy), (2005), vol. 5974 (Bellingham, Washington: SPIE) pp. 1–13

  27. 27.

    G. Chai, H. Heinrich, L. Chow, T. Schenkel, Appl. Phys. Lett. 91, 103101 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    M. Hasegawa, K. Nishidate, Phys. Rev. B 74, 115401 (2006)

    ADS  Article  Google Scholar 

  29. 29.

    A.N. Imtani, V.K. Jindal, Phys. Rev. B 76, 195447 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    Y.V. Shtogun, L.M. Woods, J. Phys. Chem. C 113, 4792 (2009)

    Article  Google Scholar 

  31. 31.

    B. Kan, J. Ding, N. Yuan, J. Wang, Z. Chen, X. Chen, Nanoscale Res. Lett. 5, 1144 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    M.K. Abu-Assy, M.S. Soliman, Nucl. Instrum. Method Phys. Res. B 384, 93 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    V. Borka Jovanović, D. Borka, S.M.D. Galijaš, Phys. Lett. A 381, 1687 (2017)

    ADS  Article  Google Scholar 

  34. 34.

    D. Borka, V. Borka Jovanović, Atoms 7, 88 (2019)

    ADS  Article  Google Scholar 

  35. 35.

    D. Borka, S.M.D. Galijaš, Roman. Rep. Phys. 71, 209 (2019)

    Google Scholar 

  36. 36.

    D. Borka, S. Petrović, N. Nešković, D.J. Mowbray, Z.L. Mišković, Phys. Rev. A 73, 062902 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    D. Borka, D.J. Mowbray, Z.L. Mišković, S. Petrović, N. Nešković, Phys. Rev. A 77, 032903 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    G. Molière, Z. Naturforsch, A 2, 133 (1947)

    Google Scholar 

  39. 39.

    J.K. Lindhard, D.V. Selsk, Mat.-Fys. Medd. 34(14), 1 (1965)

    Google Scholar 

  40. 40.

    D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974)

    ADS  Article  Google Scholar 

  41. 41.

    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2001)

    Google Scholar 

  42. 42.

    D. Borka, D.J. Mowbray, Z.L. Mišković, S. Petrović, N. Nešković, New J. Phys. 12, 043021 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    D. Borka, V. Lukić, J. Timko, V. Borka Jovanović, Nucl. Instrum. Method Phys. Res. B 279, 198 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Affiliations

Authors

Contributions

The both coauthors participated in calculation and discussion of obtained results. The authors contributed equally to this work.

Corresponding author

Correspondence to Duško Borka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borka, D., Borka Jovanović, V. Guiding of protons through radially deformed triple-wall carbon nanotubes. Eur. Phys. J. D 75, 50 (2021). https://doi.org/10.1140/epjd/s10053-021-00039-1

Download citation