Exploring quadrupole oscillator strength of impurity doped quantum dots controlled by Gaussian white noise

Abstract

Present study explores the effect of Gaussian white noise on quadrupole oscillator strength (QOS) of impurity doped quantum dot (QD). In view of this QOS profiles have been monitored as various relevant physical parameters vary over a range with and without noise. Two distinct pathways viz. additive and multiplicative have been conceived for the entrance of noise to the system. The QOS profiles exhibit rather regular behavior in absence of noise and in presence of additive noise in similar ways. However, multiplicative noise appears to be successful in bringing about important aspects like maximization, minimization and saturation in the QOS profiles and also for production of large QOS. The outcomes of the study are expected to have substantial impact on nonlinear optical properties of opto-electronic devices comprising of QD where noise plays some active role.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Taş, M. Şahin, J. Appl. Phys. 112, 053717 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. Lett. 708, 138 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    W. Xie, Phys. B 405, 3436 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    R. Khordad, H. Bahramiyan, Physica E 66, 107 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  6. 6.

    G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Curr. Appl. Phys. 11, 176 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    G. Rezaei, B. Vaseghi, F. Taghizadeh, M.R.K. Vahdani, M.J. Karimi, Superlattices Microstruct. 48, 450 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Physica B 393, 133 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, J. Lumin. 143, 304 (2013)

    Article  Google Scholar 

  12. 12.

    E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M.E. Mora-Ramos, C.A. Duque, Superlattices Microstruct. 73, 171 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Status Solidi C 4, 292 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    J. Jayarubi, A.J. Peter, C.W. Lee, Eur. Phys. J. D 73, 63 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    M. Kirak, S. Yilmaz, M. Şahin, M. Gencaslan, J. Appl. Phys. 109, 094309 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    M. Kirak, S. Yilmaz, Ü. Temizer, J. Nanoelectron. Optoelectron. 8, 165 (2013)

    Article  Google Scholar 

  18. 18.

    B. Li, K.-X. Guo, Z.-L. Liu, Y.-B. Zheng, Phys. Lett. A 372, 1337 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    E.C. Niculescu, Mod. Phys. Lett. B 15, 545 (2001)

    ADS  Article  Google Scholar 

  20. 20.

    M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592 (2013)

    Article  Google Scholar 

  21. 21.

    E. Sadeghi, Physica E 41, 365 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, J. Contemp. Phys. 42, 287 (2007)

    Article  Google Scholar 

  23. 23.

    O. Akankan, I. Erdogan, H. Akbas, Physica E 35, 217 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    I. Erdogan, O. Akankan, H. Akbas, Physica E 33, 83 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    L. Bouzaiene, H. Alamri, L. Sfaxi, H. Maaref, J. Alloys Compd. 655, 172 (2016)

    Article  Google Scholar 

  26. 26.

    G. Liu, K.-X. Guo, H. Hassanabadi, L. Lu, Physica B 407, 3676 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    A. Hakimyfard, M.G. Barseghyan, A.A. Kirakosyan, Physica E 41, 1596 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 256, 3832 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, J. Phys.: Condensed Matter 18, 1877 (2006)

    ADS  Google Scholar 

  30. 30.

    H. El, A. Ghazi, I.Zorkani Jorio, Physica B 422, 47 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    L.J. Stevanović, J. Phys. B 43, 165002 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    V.A. Holovatsky, I. Bernik, O.M. Voitsekhivska, Acta Phys. Pol. A 125, 93 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Physica E 41, 1522 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    A.R. Jafari, Physica B 446, 17 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    K.M. Kumar, A.J. Peter, C.W. Lee, Superlattices Microstruct. 51, 184 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    A. Özmen, Y. Yakar, B. Çakir, Ü. Atav, Optics Commun. 282, 3999 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    E. Sadeghi, Superlattices Microstruct. 50, 331 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    S. Yilmaz, H. Şafak, Physica E 36, 40 (2007)

    ADS  Article  Google Scholar 

  39. 39.

    B. Çakir, Y. Yakar, A. Özmen, Optics Commun. 311, 222 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. 513, 213 (2018)

    Article  Google Scholar 

  41. 41.

    S. Lumb, S. Lumb, V. Prasad, Eur. Phys. J. Plus 130, 149 (2015)

    Article  Google Scholar 

  42. 42.

    N.M. Cann, A.J. Thakkar, J. Phys. B: At. Mol. Opt. Phys. 35, 421 (2002)

    ADS  Article  Google Scholar 

  43. 43.

    S. Rajashabala, K. Navaneethakrishnan, Superlattices Microstruct. 43, 247 (2008)

    ADS  Article  Google Scholar 

  44. 44.

    S. Rajashabala, K. Navaneethakrishnan, Mod. Phys. Lett. B 20, 1529 (2006)

    ADS  Article  Google Scholar 

  45. 45.

    A.J. Peter, K. Navaneethakrishnan, Physica E 40, 2747 (2008)

    ADS  Article  Google Scholar 

  46. 46.

    R. Khordad, Physica E 42, 1503 (2010)

    ADS  Article  Google Scholar 

  47. 47.

    R. Khordad, Physica B 406, 3911 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    X.-H. Qi, X.-J. Kang, J.-J. Liu, Phys. Rev. B 58, 10578 (1998)

    ADS  Article  Google Scholar 

  49. 49.

    A.J. Peter, Int. J. Mod. Phys. B 26, 5109 (2009)

    ADS  Article  Google Scholar 

  50. 50.

    Y.-X. Li, J.-J. Liu, X.-J. Kang, J. Appl. Phys. 88, 2588 (2000)

    ADS  Article  Google Scholar 

  51. 51.

    Y. Naimi, J. Vahedi, M.R. Soltani, Opt. Quantum Electron. 47, 2947 (2015)

    Article  Google Scholar 

  52. 52.

    M. Köksal, E. Kilicarslan, H. Sari, I. Sökmen, Physica B 404, 3850 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    Z.-Y. Deng, J.-K. Guo, T.-R. Lai, Phys. Rev. B 50, 5736 (1994)

    ADS  Article  Google Scholar 

  54. 54.

    W. Xie, Superlattices Microstruct. 53, 49 (2013)

    ADS  Article  Google Scholar 

  55. 55.

    W. Xie, Physica B 407, 4588 (2012)

    ADS  Article  Google Scholar 

  56. 56.

    Gh Safarpour, M.A. Izadi, M. Novzari, E. Niknam, M. Moradi, Physica E 59, 124 (2014)

    ADS  Article  Google Scholar 

  57. 57.

    Gh Safarpour, M.A. Izadi, M. Novzari, S. Yazdanpanahi, Superlattices Microstruct 75, 936 (2014)

    ADS  Article  Google Scholar 

  58. 58.

    H.D. Karki, S. Elagöz, P. Başer, Superlattices Microstruct. 48, 298 (2010)

    ADS  Article  Google Scholar 

  59. 59.

    L. Lu, W. Xie, Z. Shu, Physica B 406, 3735 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manas Ghosh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Ghosh, A., Arif, S.M. et al. Exploring quadrupole oscillator strength of impurity doped quantum dots controlled by Gaussian white noise. Eur. Phys. J. D 74, 230 (2020). https://doi.org/10.1140/epjd/e2020-10424-9

Download citation

Keywords

  • Optical Phenomena and Photonics