Electrostatic guiding of the methylidyne radical at cryogenic temperatures


We have produced a cryogenic buffer-gas cooled beam of the diatomic molecular radical CH (methylidyne). This molecule is of interest for studying cold chemical reactions and fundamental physics measurements. Its light mass and ground-state structure make it a promising candidate for electrostatic guiding and Stark deceleration, which allows for control over its kinetic energy. This control can facilitate studies of reactions with tuneable collision energies and trapping for precise spectroscopic studies. Here, we have demonstrated electrostatic guiding of CH with fluxes up to 109 molecules per steradian per pulse.

Graphical abstract

This is a preview of subscription content, log in to check access.


  1. 1.

    D. Phelps, F. Dalby, Phys. Rev. Lett. 16, 3 (1966)

    ADS  Article  Google Scholar 

  2. 2.

    M. McCarthy, S. Mohamed, J. Brown, P. Thaddeus, Proc. Natl. Acad. Sci. 103, 12263 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    S. Truppe, R. Hendricks, S. Tokunaga, H. Lewandowski, M. Kozlov, C. Henkel, E. Hinds, M. Tarbutt, Nat. Commun. 4, 2600 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    M. Fabrikant, T. Li, N. Fitch, N. Farrow, J.D. Weinstein, H. Lewandowski, Phys. Rev. A 90, 033418 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    F. Guang-Bin, D. Lian-Zhong, Y. Jian-Ping, Chin. Phys. Lett. 25, 923 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    L. Railing, J. Sahw, D. McCarron, in 50th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics (2019)

  7. 7.

    M.T. Bell, T.P. Softley, Mol. Phys. 107, 99 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    R.A. Brownsword, A. Canosa, B.R. Rowe, I.R. Sims, I.W. Smith, D.W. Stewart, A.C. Symonds, D. Travers, J. Chem. Phys. 106, 7662 (1997)

    ADS  Article  Google Scholar 

  9. 9.

    P. Maksyutenko, F. Zhang, X. Gu, R.I. Kaiser, Phys. Chem. Chem. Phys. 13, 240 (2011)

    Article  Google Scholar 

  10. 10.

    J.A. Miller, R.J. Kee, C.K. Westbrook, Annu. Rev. Phys. Chem. 41, 345 (1990)

    ADS  Article  Google Scholar 

  11. 11.

    A. Canosa, I.R. Sims, D. Travers, I.W. Smith, B. Rowe, Astron. Astrophys. 323, 644 (1997)

    ADS  Google Scholar 

  12. 12.

    S. Prasad, W. Huntress Jr, Astrophys. J. Suppl. Ser. 43, 1 (1980)

    ADS  Article  Google Scholar 

  13. 13.

    T. Millar, D. Williams, Sci. Prog. 1933, 279 (1991)

    Google Scholar 

  14. 14.

    A.B. Henson, S. Gersten, Y. Shagam, J. Narevicius, E. Narevicius, Science 338, 234 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    J. Greenberg, P.C. Schmid, M. Miller, J.F. Stanton, H. Lewandowski, Phys. Rev. A 98, 032702 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    G.K. Chen, C. Xie, T. Yang, A. Li, A.G. Suits, E.R. Hudson, W.C. Campbell, H. Guo, Phys. Chem. Chem. Phys. 21, 14005 (2019)

    Article  Google Scholar 

  17. 17.

    S.E. Maxwell, N. Brahms, D. Glenn, J. Helton, S. Nguyen, D. Patterson, J. Petricka, D. DeMille, J. Doyle, et al., Phys. Rev. Lett. 95, 173201 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999)

    ADS  Article  Google Scholar 

  19. 19.

    J. Barry, D. McCarron, E. Norrgard, M. Steinecker, D. DeMille, Nature 512, 286 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    V. Andreev, D. Ang, D. DeMille, J. Doyle, G. Gabrielse, J. Haefner, N. Hutzler, Z. Lasner, C. Meisenhelder, B. O’Leary, et al., Nature 562, 355 (2018)

    ADS  Article  Google Scholar 

  21. 21.

    S.Y. van de Meerakker, H.L. Bethlem, N. Vanhaecke, G. Meijer, Chem. Rev. 112, 4828 (2012)

    Article  Google Scholar 

  22. 22.

    D. Patterson, J.M. Doyle, J. Chem. Phys. 126, 154307 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    L.D. van Buuren, C. Sommer, M. Motsch, S. Pohle, M. Schenk, J. Bayerl, P.W. Pinkse, G. Rempe, Phys. Rev. Lett. 102, 033001 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    D. Patterson, J. Rasmussen, J.M. Doyle, New J. Phys. 11, 055018 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    P.F. Staanum, K. Højbjerre, R. Wester, M. Drewsen, Phys. Rev. Lett. 100, 243003 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    S. Willitsch, M.T. Bell, A.D. Gingell, S.R. Procter, T.P. Softley, Phys. Rev. Lett. 100, 043203 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    J.D. Weinstein, R. Decarvalho, K. Amar, A. Boca, B.C. Odom, B. Friedrich, J.M. Doyle, J. Chem. Phys. 109, 2656 (1998)

    ADS  Article  Google Scholar 

  28. 28.

    J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle, Nature 395, 148 (1998)

    ADS  Article  Google Scholar 

  29. 29.

    S. Truppe, M. Hambach, S.M. Skoff, N.E. Bulleid, J.S. Bumby, R.J. Hendricks, E.A. Hinds, B.E. Sauer, M.R. Tarbutt, J. Mod. Opt. 65, 648 (2018)

    ADS  Article  Google Scholar 

  30. 30.

    M. Zachwieja, J. Mol. Spectrosc. 170, 285 (1995)

    ADS  Article  Google Scholar 

  31. 31.

    S. Truppe, R. Hendricks, S. Tokunaga, E. Hinds, M. Tarbutt, J. Mol. Spectrosc. 300, 70 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    J. Luque, D.R. Crosley, J. Chem. Phys. 104, 2146 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    D. Budker, D.F. Kimball, D. DeMille, Atomic Physics (Oxford University Press, 2004)

  34. 34.

    D. Lancaster, A source of cold molecules: cryostat design, construction, and finding a CH source, B.S. thesis, University of Nevada, Reno, 2018.

  35. 35.

    D. Xiao, D.M. Lancaster, C.H. Allen, M.J. Taylor, T.A. Lancaster, G. Shaw, N.R. Hutzler, J.D. Weinstein, Phys. Rev. A 99, 013603(2019)

    ADS  Article  Google Scholar 

  36. 36.

    M. Taylor, Characterizing a cold molecular beam source using de Laval nozzles, B.S. thesis, University of Nevada, Reno, 2018.

  37. 37.

    P.J. Linstrom, W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg, MD 20899, , 2019), http://webbook.nist.gov/

  38. 38.

    N. Quiros, N. Tariq, T.V. Tscherbul, J. Kłos, J.D. Weinstein, Phys. Rev. Lett. 118, 213401 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    A. Roth, Vacuum Technology, 3rd edn. (Elsevier Science, 1990)

  40. 40.

    M.J. Lu, V. Singh, J.D. Weinstein, Phys. Rev. A 79, 050702 (2009)

    ADS  Article  Google Scholar 

  41. 41.

    J.E. Sansonetti, W.C. Martin, S.L. Young, Handbook of Basic Atomic Spectroscopic Data (Version 1.1.2) (National Institute of Standards and Technology, Gaithersburg, MD, 2005), http://physics.nist.gov/Handbook

  42. 42.

    N.R. Hutzler, H.I. Lu, J.M. Doyle, Chem. Rev. 112, 4803 (2012)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jonathan D. Weinstein.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lancaster, D.M., Allen, C.H., Jersey, K. et al. Electrostatic guiding of the methylidyne radical at cryogenic temperatures. Eur. Phys. J. D 74, 132 (2020). https://doi.org/10.1140/epjd/e2020-10240-3

Download citation


  • Molecular Physics and Chemical Physics