The role of the Debye screening of circular Rydberg states of hydrogenic systems in collinear electric and magnetic fields of arbitrary strengths


We consider classical circular Rydberg states of a hydrogenic atom/ion under collinear electric and magnetic fields of arbitrary strengths, the entire system being immersed into a plasma with the Debye screening. In this way we add a “new dimension” to the results of the previous paper of one of us, where the screening was not taken into account. We show in detail how the screening decreases the value of the critical electric field required for the ionization at different values of the magnetic field. Our results should have a fundamental importance because hydrogenic atoms/ions under external fields remain a test-bench for atomic physics. Also our results could motivate experiments on the magnetic control of the “continuum lowering” in cold Rydberg plasmas, this being of practical importance.

Graphical abstract

This is a preview of subscription content, log in to check access.


  1. 1.

    E. Oks, Eur. Phys. J. D 28, 171 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    E. Lee, D. Farrelly, T. Uzer, Opt. Express 1, 221 (1997)

    ADS  Article  Google Scholar 

  3. 3.

    T.C. Germann, D.R. Herschbach, M. Dunn, D.K. Watson, Phys. Rev. Lett. 74, 658 (1995)

    ADS  Article  Google Scholar 

  4. 4.

    C.H. Cheng, C.Y. Lee, T.F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994)

    ADS  Article  Google Scholar 

  5. 5.

    L. Chen, M. Cheret, F. Roussel, G. Spiess, J. Phys. B 26, L437 (1993)

    ADS  Article  Google Scholar 

  6. 6.

    S.K. Dutta, D. Feldbaum, A. Walz-Flannigan, J.R. Guest, G. Raithel, Phys. Rev. Lett. 86, 3993 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985)

    ADS  Article  Google Scholar 

  8. 8.

    K.B. MacAdam, E. Horsdal-Petersen, J. Phys. B 36, R167 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    V.M. Vainberg, V.S. Popov, A.V. Sergeev, Sov. Phys. JETP 71, 470 (1990)

    Google Scholar 

  10. 10.

    E. Oks, E. Dalimier, A.Ya Faenov, P. Angelo, S.A. Pikuz, E. Tubman, N.M.H. Butler, R.J. Dance, T.A. Pikuz, IYu Skobelev, M.A. Alkhimova, N. Booth, J. Green, C. Gregory, A. Andreev, A. Zhidkov, R. Kodama, P. McKenna, N. Woolsey, Opt. Express 25 (2017) 1958.

    ADS  Article  Google Scholar 

  11. 11.

    E. Oks, E. Dalimier, A.Ya Faenov, P. Angelo, S.A. Pikuz, T.A. Pikuz, I.Yu. Skobelev, S.N. Ryazanzev, P. Durey, L. Doehl, D. Farley, C.D. Baird, K.L. Lancaster, C.D. Murphy, N. Booth, C. Spindloe, P. McKenna, N. Neumann, M. Roth, R. Kodama, N. Woolsey, J. Phys. B: At. Mol. Opt. Phys. 50, 245006 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    A.I. Zhuzhunashvili, E. Oks, Sov. Phys. JETP 46, 1122 (1977)

    ADS  Google Scholar 

  13. 13.

    V.P. Gavrilenko, E.A. Oks, Sov. Phys. JETP 53, 1122 (1981)

    Google Scholar 

  14. 14.

    V.P. Gavrilenko, E.A. Oks, Sov. J. Plasma Phys. 13, 22 (1987)

    Google Scholar 

  15. 15.

    E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields, Springer Series on Atoms and Plasmas (Springer, Berlin, 1995), Vol. 9

  16. 16.

    E. Oks, in Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lineshapes of One-, Two-, and Three-Electron Systems (World Scientific, Singapore, 2017)

  17. 17.

    E. Dalimier, E. Oks, O. Renner, Atoms 2, 178 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    E. Oks, E. Dalimier, A. Faenov, O. Renner, J. Phys. Conf. Ser. 548, 012030 (2014)

    Article  Google Scholar 

  19. 19.

    V.S. Belyaev, V.P. Krainov, V.S. Lisitsa, A.P. Matafonov, Phys. Uspekhi 51, 793 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    M.R. Flannery, E. Oks, Phys. Rev. A 73, 013405 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    W.R.S. Garton, F.S. Tomkins, Astrophys. J. 158, 839 (1969)

    ADS  Article  Google Scholar 

  22. 22.

    M. Brack, R.K. Bhaduri, in Semiclassical Physics (Addison-Wesley, Reading, Massachusetts, 1997), Sect. 1.4.2

  23. 23.

    R.P. Drake, in High-Energy-Density-Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Springer, Berlin, 2006), Sect. 3.2.2

  24. 24.

    S. Atzeni, J. Meyer-ter-Vehn, in The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford Univ. Press, New York, 2004), Sect. 10.1.4

  25. 25.

    D. Salzmann, in Atomic Physics in Hot Plasmas (Oxford University Press, Oxford, 1998), Chap. 2

  26. 26.

    M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998)

    ADS  Article  Google Scholar 

  27. 27.

    H.R. Griem, in Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997), Sects 5.5, 7.3

  28. 28.

    J. Stein, I.B. Goldberg, D. Shalitin, D. Salzmann, Phys. Rev. A 39, 2078 (1989)

    ADS  Article  Google Scholar 

  29. 29.

    D. Salzmann, J. Stein, I.B. Goldberg, R.H. Pratt, Phys. Rev. A 44, 1270 (1991)

    ADS  Article  Google Scholar 

  30. 30.

    J. Stein, D. Salzmann, Phys. Rev. A 45, 3943 (1992)

    ADS  Article  Google Scholar 

  31. 31.

    P. Malnoult, B. D’Etat, H. Nguen, Phys. Rev. A 40, 1983 (1989)

    ADS  Article  Google Scholar 

  32. 32.

    Y. Furutani, K. Ohashi, M. Shimizu, A. Fukuyama, J. Phys. Soc. Jpn. 62, 3413 (1993)

    ADS  Article  Google Scholar 

  33. 33.

    P. Sauvan, E. Leboucher-Dalimier, P. Angelo, H. Derfoul, T. Ceccotti, A. Poquerusse, A. Calisti, B. Talin, J. Quant. Spectrosc. Radiat. Transfer 65, 511 (2000)

    ADS  Article  Google Scholar 

  34. 34.

    E. Oks, Phys. Rev. E 63, 057401 (2001)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eugene Oks.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kryukov, N., Oks, E. The role of the Debye screening of circular Rydberg states of hydrogenic systems in collinear electric and magnetic fields of arbitrary strengths. Eur. Phys. J. D 74, 125 (2020).

Download citation


  • Atomic Physics