Supersolid phase of cold atoms

Abstract

Supersolid phase is a phase of matter that is characterized by the combination of the off-diagonal long-range order of superfluid and the diagonal long-range order of solid. Cold atoms with spin–orbit-coupling, contact interaction and long-range interaction can provide systems for the research of supersolid phase. Under the effect of spin-dependent potential and spin–orbit-coupling, hard-core ultra-cold atoms with contact interaction can be shown to construct supersolid phase. The combination of soft-core long-range interaction and spin–orbit coupling can establish exotic supersolid phase with spontaneous breakdown of chiral symmetry. The optical Bragg scattering of cold atoms in optical lattices can be used to detect supersolid phase. The study of supersolid phase will be helpful to the researches of matter phases.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. Han, G. Juzeliūnas, W. Zhang, W.M. Liu, Please note that as many references were identical, the latter has been removed from reference list and ensuing references have been renumbered, Phys. Rev. A 91, 013607 (2015)

    ADS  MathSciNet  Google Scholar 

  2. 2.

    W. Han, X.F. Zhang, D.S. Wang, H.F. Jiang, W. Zhang, S.G. Zhang, Phys. Rev. Lett. 121, 030404 (2018)

    ADS  Google Scholar 

  3. 3.

    R. Liao, Phys. Rev. Lett. 120, 140403 (2018)

    ADS  Google Scholar 

  4. 4.

    J. Ye, J.M. Zhang, W.M. Liu, K. Zhang, Y. Li, W. Zhang, Phys. Rev. A 83, 051604(R) (2011)

    ADS  Google Scholar 

  5. 5.

    S. Balibar, Nature (London) 464, 176 (2010)

    ADS  Google Scholar 

  6. 6.

    E. Kim, M.H.W. Chan, Nature (London) 427, 225 (2004)

    ADS  Google Scholar 

  7. 7.

    J. Ye, Phys. Rev. Lett. 97, 125302 (2006)

    ADS  Google Scholar 

  8. 8.

    J. Day, J. Beamish, Nature (London) 450, 853 (2007)

    ADS  Google Scholar 

  9. 9.

    B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Science 324, 632 (2009)

    ADS  Google Scholar 

  10. 10.

    H. Choi, D. Takahashi, K. Kono, E. Kim, Science 330, 1512 (2010)

    ADS  Google Scholar 

  11. 11.

    A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29 (1969) 1107.

    ADS  Google Scholar 

  12. 12.

    G.V. Chester, Phys. Rev. A 2, 256 (1970)

    ADS  Google Scholar 

  13. 13.

    A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970)

    ADS  Google Scholar 

  14. 14.

    M.W. Meisel, Physica B 178, 121 (1992)

    ADS  Google Scholar 

  15. 15.

    S. Balibar, F. Caupin, J. Phys.: Condens. Matter 20, 173201 (2008)

    ADS  Google Scholar 

  16. 16.

    M. Boninsegni, N.V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)

    ADS  Google Scholar 

  17. 17.

    N. Henkel, R. Nath, T. Pohl, Phys. Rev. Lett. 104, 195302 (2010)

    ADS  Google Scholar 

  18. 18.

    F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010)

    ADS  Google Scholar 

  19. 19.

    N. Henkel, F. Cinti, P. Jain, G. Pupillo, T. Pohl, Phys. Rev. Lett. 108, 265301 (2012)

    ADS  Google Scholar 

  20. 20.

    S. Wessel, M. Troyer, Phys. Rev. Lett. 95, 127205 (2005)

    ADS  Google Scholar 

  21. 21.

    I. Danshita, C.A.R. Sá de Melo, Phys. Rev. Lett. 103, 225301 (2009)

    ADS  Google Scholar 

  22. 22.

    O. Tieleman, A. Lazarides, C. Morais Smith, Phys. Rev. A 83, 013627 (2011)

    ADS  Google Scholar 

  23. 23.

    B.M. Anderson, I.B. Spielman, G. Juzeliūnas, Phys. Rev. Lett. 111, 125301 (2013)

    ADS  Google Scholar 

  24. 24.

    Z.F. Xu, L. You, M. Ueda, Phys. Rev. A 87, 063634 (2013)

    ADS  Google Scholar 

  25. 25.

    I.H. Deutsch, P.S. Jessen, Phys. Rev. A 57, 1972 (1998)

    ADS  Google Scholar 

  26. 26.

    O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, I. Bloch, Phys. Rev. Lett. 91, 010407 (2003)

    ADS  Google Scholar 

  27. 27.

    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

  28. 28.

    G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003)

  29. 29.

    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. Lett. 93, 250406 (2004)

    ADS  Google Scholar 

  30. 30.

    V. Schweikhard, I. Coddington, P. Engels, S. Tung, E.A. Cornell, Phys. Rev. Lett. 93, 210403 (2004)

    ADS  Google Scholar 

  31. 31.

    S.W. Su, C.H. Hsueh, I.K. Liu, T.L. Horng, Y.C. Tsai, S.C. Gou, W.M. Liu, Phys. Rev. A 84, 023601 (2011)

    ADS  Google Scholar 

  32. 32.

    H. Hu, B. Ramachandhran, H. Pu, X.J. Liu, Phys. Rev. Lett. 108, 010402 (2012)

    ADS  Google Scholar 

  33. 33.

    B.A. Malomed, H.E. Nistazakis, D.J. Frantzeskakis, P.G. Kevrekidis, Phys. Rev. A 70, 043616 (2004)

    ADS  Google Scholar 

  34. 34.

    G. Chen, T. Ma, A.T. N’Diaye, H. Kwon, C. Won, Y. Wu, A.K. Schmid, Nat. Commun. 4, 2671 (2013)

    ADS  Google Scholar 

  35. 35.

    K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Nat. Nanotechnol. 8, 527 (2013)

    ADS  Google Scholar 

  36. 36.

    S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S.D. Beach, Nat. Mater. 12, 611 (2013)

    ADS  Google Scholar 

  37. 37.

    P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.S. Lühmann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2010)

    Google Scholar 

  38. 38.

    N. Gemelke, X. Zhang, C.L. Hung, C. Chin, Nature (London) 460, 995 (2009)

    ADS  Google Scholar 

  39. 39.

    W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Science 329, 547 (2010)

    ADS  Google Scholar 

  40. 40.

    D. Bohm, Phys. Rev. 75, 502 (1949)

    ADS  Google Scholar 

  41. 41.

    Y. Ohashi, T. Momoi, J. Phys. Soc. Jpn. 65, 3254 (1996)

    ADS  Google Scholar 

  42. 42.

    Y.J. Lin, R.L. Compton, K. Jiménez-Garca, J.V. Porto, I.B. Spielman, Nature (London) 462, 628 (2009)

    ADS  Google Scholar 

  43. 43.

    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    ADS  Google Scholar 

  44. 44.

    J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001)

    ADS  Google Scholar 

  45. 45.

    C.H. Hsueh, Y.C. Tsai, K.S. Wu, M.S. Chang, W.C. Wu, Phys. Rev. A 88, 043646 (2013)

    ADS  Google Scholar 

  46. 46.

    S. Sinha, R. Nath, L. Santos, Phys. Rev. Lett. 107, 270401 (2011)

    Google Scholar 

  47. 47.

    S.W. Su, I.K. Liu, Y.C. Tsai, W.M. Liu, S.C. Gou, Phys. Rev. A 86, 023601 (2012)

    ADS  Google Scholar 

  48. 48.

    Z.F. Xu, Y. Kawaguchi, L. You, M. Ueda, Phys. Rev. A 86, 033628 (2012)

    ADS  Google Scholar 

  49. 49.

    E. Ruokokoski, J.A.M. Huhtamäki, M. Möttönen, Phys. Rev. A 86, 051607(R) (2012)

    ADS  Google Scholar 

  50. 50.

    Z.F. Xu, S. Kobayashi, M. Ueda, Phys. Rev. A 88, 013621 (2013)

    ADS  Google Scholar 

  51. 51.

    S.W. Su, S.C. Gou, Q. Sun, L. Wen, W.M. Liu, A.C. Ji, J. Ruseckas, G. Juzeliūnas, Phys. Rev. A 93, 053630 (2016)

    ADS  Google Scholar 

  52. 52.

    D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998)

    ADS  Google Scholar 

  53. 53.

    A. Altland, B. Simons, Condensed Matter Field Theory. 2nd edn. (Cambridge University Press, Camgridge, 2010)

  54. 54.

    R. Liao, Z.G. Huang, X.M. Lin, W.M. Liu, Phys. Rev. A 87, 043605 (2013)

    ADS  Google Scholar 

  55. 55.

    T. Ozawa, G. Baym, Phys. Rev. Lett. 109, 025301 (2012)

    ADS  Google Scholar 

  56. 56.

    H. Stoof, K. Gubbels, D. Dickercheid, Ultracold Quantum Fields (Springer, Bristol, 2009)

  57. 57.

    J.O. Anderson, Rev. Mod. Phys. 76, 599 (2004)

    ADS  Google Scholar 

  58. 58.

    Q. Zhou, X. Cui, Phys. Rev. Lett. 110, 140407 (2013)

    ADS  Google Scholar 

  59. 59.

    T. Ozawa, G. Baym, Phys. Rev. Lett. 110, 085304 (2013)

    ADS  Google Scholar 

  60. 60.

    R. Liao, Z.G. Huang, X.M. Lin, O. Fialko, Phys. Rev. A 89, 063614 (2014)

    ADS  Google Scholar 

  61. 61.

    V. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 2001)

  62. 62.

    S.C. Ji, L. Zhang, X.T. Xu, Z. Wu, Y. Deng, S. Chen, J.W. Pan, Phys. Rev. Lett. 114, 105301 (2015)

    ADS  Google Scholar 

  63. 63.

    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    ADS  Google Scholar 

  64. 64.

    G. Grynberg, B. Lounis, P. Verkerk, J.Y. Courtois, C. Salomon, Phys. Rev. Lett. 70, 2249 (1993)

    ADS  Google Scholar 

  65. 65.

    L. Santos, M.A. Baranov, J.I. Cirac, H.-U. Everts, H. Fehrmann, M. Lewenstein, Phys. Rev. Lett. 93, 030601 (2004)

    ADS  Google Scholar 

  66. 66.

    A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Phys. Rev. Lett. 94, 160401 (2005)

    ADS  Google Scholar 

  67. 67.

    K.K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008)

    ADS  Google Scholar 

  68. 68.

    J. Ye, Nucl. Phys. B 805, 418 (2008)

    ADS  Google Scholar 

  69. 69.

    J.R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F.Ç. Top, A.O. Jamison, W. Ketterle, Nature (London) 543, 91 (2017)

    ADS  Google Scholar 

  70. 70.

    J. Léonard, A. Morales, P. Zupancic, T. Esslinger, T. Donner, Nature 543, 87 (2017)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wu-Ming Liu.

Additional information

Contribution to the Topical Issue “Topological Ultracold Atoms and Photonic Systems”, edited by G. Juzeliūnas, R. Ma, Y.-J. Lin and T. Calarco.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Han, W., Liao, R. et al. Supersolid phase of cold atoms. Eur. Phys. J. D 74, 138 (2020). https://doi.org/10.1140/epjd/e2020-10127-3

Download citation