Understanding asymmetry in electromagnetically induced transparency for 87Rb in strong transverse magnetic field

Abstract

We present the results of our experimental investigation performed for D2 line of 87Rb. In this work, we have studied the phenomenon of electromagnetically induced transparency of 87Rb in presence of a transverse magnetic field and it is interesting to find the EIT spectrum shows signature of the closely lying hyperfine excited states in particular F′ = 1. We choose two different configurations for our study namely, Λ1 and Λ2 realised by locking probe beam at two different transition i.e. |F = 1〉 → |F′ = 2〉 and |F = 2〉 → |F′ = 2〉 respectively. We observe asymmetric features in both configurations at high magnetic field and for Λ1 configuration we find complete conversion from transmission to absorption. We explain the observations by quantitative assessment of the impurities in the dark states which arises because of the influence of the neighbouring states. We substantiate our experimental findings with density based numerical calculations.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.E. Harris, J. Field, A. Imamoğlu, Phys. Rev. Lett. 64, 1107 (1990)

    ADS  Article  Google Scholar 

  2. 2.

    K.J. Boller, A. Imamoğlu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    ADS  Article  Google Scholar 

  3. 3.

    J. Field, K. Hahn, S. Harris, Phys. Rev. Lett. 67, 3062 (1991)

    ADS  Article  Google Scholar 

  4. 4.

    F. Schmidt-Kaler, J. Eschner, G. Morigi, C. Roos, D. Leibfried, A. Mundt, R. Blatt, Appl. Phys. B: Lasers Opt. 73, 807 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    V. Yudin, A. Taichenachev, Y. Dudin, V. Velichansky, A. Zibrov, S. Zibrov, Phys. Rev. A 82, 033807 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    M. Lukin, A. Imamoğlu, Nature 413, 273 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    G. Nikoghosyan, Eur. Phys. J. D 36, 119 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    R. Beausoleil, W. Munro, D. Rodrigues, T. Spiller, J. Mod. Opt. 51, 2441 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    ADS  Article  Google Scholar 

  10. 10.

    S. Badger, I. Hughes, C. Adams, J. Phys. B: At. Mol. Opt. Phys. 34, L749 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    J. Maragos, J. Mod. Opt. 45, 471 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    S. Gozzini, S. Cartaleva, A. Lucchesini, C. Marinelli, L. Marmugi, D. Slavov, T. Karaulanov, Eur. Phys. J. D 53, 153 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    S. Baluschev, N. Leinfellner, E. Korsunsky, L. Windholz, Eur. Phys. J. D 2, 5 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    A. Joshi, M. Xiao, Eur. Phys. J. D 30, 431 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    L. Silvestri, F. Bassani, G. Czajkowski, B. Davoudi, Eur. Phys. J. B 27, 89 (2002)

    ADS  Google Scholar 

  16. 16.

    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    S. Iftiquar, V. Natarajan, Phys. Rev. A 79, 013808 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    S. Mitra, S. Dey, M. Hossain, P. Ghosh, B. Ray, J. Phys. B: At. Mol. Opt. Phys. 46, 075002 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    X.G. Wei, J.H. Wu, G.X. Sun, Z. Shao, Z.H. Kang, Y. Jiang, J.Y. Gao, Phys. Rev. A 72, 023806 (2005)

    ADS  Article  Google Scholar 

  20. 20.

    H.Y. Ling, Y.Q. Li, M. Xiao, Phys. Rev. A 53, 1014 (1996)

    ADS  Article  Google Scholar 

  21. 21.

    A. Sargsyan, D. Sarkisyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, A. Wilson-Gordon, M. Auzinsh, J. Exp. Theor. Phys. 121, 966 (2015)

    ADS  Article  Google Scholar 

  22. 22.

    H. Cheng, H.M. Wang, S.S. Zhang, P.P. Xin, J. Luo, H.P. Liu, J. Phys. B: At. Mol. Opt. Phys. 50, 095401 (2017)

    ADS  Article  Google Scholar 

  23. 23.

    S. Khan, M.P. Kumar, V. Bharti, V. Natarajan, Eur. Phys. J. D 71, 38 (2017)

    ADS  Article  Google Scholar 

  24. 24.

    O. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. Sheremet, A. Bramati, D. Kupriyanov, J. Laurat, E. Giacobino, Phys. Rev. A 83, 053809 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    Z.R. Chen, X.M. Su, Eur. Phys. J. D 67, 138 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    E.E. Mikhailov, I. Novikova, Y.V. Rostovtsev, G.R. Welch, Phys. Rev. A 70, 033806 (2004)

    ADS  Article  Google Scholar 

  27. 27.

    U. Khadka, Y. Zhang, M. Xiao, Phys. Rev. A 81, 023830 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    J.X. Zhang, H.T. Zhou, D.W. Wang, S.Y. Zhu, Phys. Rev. A 83, 053841 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, D. Sarkisyan, Appl. Phys. B 105, 767 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    S. Sang, Z. Wu, J. Sun, H. Lan, Y. Zhang, X. Zhang, Y. Zhang, IEEE Photon. J. 4, 1973 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    M. Bhattarai, V. Bharti, V. Natarajan, A. Sargsyan, D. Sarkisyan, Phys. Lett. A 383, 91 (2019)

    ADS  Article  Google Scholar 

  32. 32.

    I.H. Subba, A. Tripathi, J. Phys. B: At. Mol. Opt. Phys. 51, 155001 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    B. Yang, Q. Liang, J. He, T. Zhang, J. Wang, Phys. Rev. A 81, 043803 (2010)

    ADS  Article  Google Scholar 

  34. 34.

    S.R. Chanu, K. Pandey, V. Natarajan, EPL (Europhys. Lett.) 98, 44009 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    G. Školnik, N. Vujičić, T. Ban, Opt. Commun. 282, 1326 (2009)

    ADS  Article  Google Scholar 

  36. 36.

    S. Chakrabarti, A. Pradhan, B. Ray, P.N. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 38, 4321 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    M. Fleischhauer, Opt. Express 4, 107 (1999)

    ADS  Article  Google Scholar 

  38. 38.

    M. Bhattarai, S. Khan, V. Natarajan, K. Pandey, https://arxiv:1908.10138 (2019)

  39. 39.

    J. Wang, Phys. Rev. A 81, 033841 (2010)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajay Tripathi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subba, I.H., Singh, R.K., Sharma, N. et al. Understanding asymmetry in electromagnetically induced transparency for 87Rb in strong transverse magnetic field. Eur. Phys. J. D 74, 136 (2020). https://doi.org/10.1140/epjd/e2020-10050-7

Download citation

Keywords

  • Atomic Physics