Skip to main content
Log in

Holographic interferences in photoelectron spectra: different approaches

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We perform a theoretical study of the holographic structures in photoelectron spectra for ionization of hydrogen atoms induced by short laser pulses. To elucidate the nature of the holographic structures present in the momentum distributions of photoelectrons, we use several quantum approximations, such as the strong field and Coulomb–Volkov approximations up to second order, as well as semiclassical Monte Carlo simulations. In a single-cycle pulse, we eliminate the intracycle interference from the spectra isolating the holographic structure formed in the photoionization process. We probe the different approaches and analyze the role of electron–core interaction numerically by solving the time dependent Schrödinger equation. We show that the two-step semiclassical model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)] fully considers the effect of the Coulomb potential on the electron dynamics and semiclassical phase reproducing the holographic structure in full quantum calculations. Contrarily, perturbative quantum (strong field and Coulomb–Volkov) and semiclassical (quantum trajectory Monte Carlo) methods account only partially for some of the characteristics of the holographic interference pattern.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  2. P. Agostini, L.F. DiMauro, Adv. At. Mol. Opt. Phys. 61, 117 (2012)

    Article  ADS  Google Scholar 

  3. W. Becker, S.P. Goreslavski, D.B. Milošević, G.G. Paulus, J. Phys. B: At. Mol. Opt. Phys. 47, 204022 (2014)

    Article  ADS  Google Scholar 

  4. D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81, 021403 (2010)

    Article  ADS  Google Scholar 

  5. S. Borbély, A. Tóth, K. Tőkési, L. Nagy, Phys. Rev. A 87, 013405 (2013)

    Article  ADS  Google Scholar 

  6. Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A.S. Smolkowska, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko et al., Science 331, 61 (2011)

    Article  ADS  Google Scholar 

  7. Y. Huismans, A. Gijsbertsen, A.S. Smolkowska, J.H. Jungmann, A. Rouzée, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko et al., Phys. Rev. Lett. 109, 013002 (2012)

    Article  ADS  Google Scholar 

  8. N.I. Shvetsov-Shilovski, M. Lein, Phys. Rev. A 97, 013411 (2018)

    Article  ADS  Google Scholar 

  9. A. L’huillier, M. Lewenstein, P. Salières, P. Balcou, M.Y. Ivanov, J. Larsson, C.G. Wahlström, Phys. Rev. A 48, R3433 (1993)

    Article  ADS  Google Scholar 

  10. G.G. Paulus, W. Becker, W. Nicklich, H. Walther, J. Phys. B: At. Mol. Opt. Phys. 27, L703 (1994)

    Article  ADS  Google Scholar 

  11. G.G. Paulus, W. Becker, H. Walther, Phys. Rev. A 52, 4043 (1995)

    Article  ADS  Google Scholar 

  12. W. Becker, F. Grasbon, R. Kopold, D.B. Milošević, G.G. Paulus, H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002)

    Article  ADS  Google Scholar 

  13. N. Suárez, A. Chacón, M.F. Ciappina, J. Biegert, M. Lewenstein, Phys. Rev. A 92, 063421 (2015)

    Article  ADS  Google Scholar 

  14. M. Lewenstein, K.C. Kulander, K.J. Schafer, P.H. Bucksbaum, Phys. Rev. A 51, 1495 (1995)

    Article  ADS  Google Scholar 

  15. G. Porat, G. Alon, S. Rozen, O. Pedatzur, M. Krüger, D. Azoury, A. Natan, G. Orenstein, B. Bruner, M. Vrakking et al., Nat. Commun. 9, 2805 (2018)

    Article  ADS  Google Scholar 

  16. F.H.M. Faisal, J. Phys. B: At. Mol. Phys. 6, L89 (1973)

    Article  ADS  Google Scholar 

  17. H.R. Reiss, Phys. Rev. A 22, 1786 (1980)

    Article  ADS  Google Scholar 

  18. M.S. Gravielle, D.G. Arbó, J.E. Miraglia, M.F. Ciappina, J. Phys. B: At. Mol. Phys. 45, 015601 (2012)

    Article  ADS  Google Scholar 

  19. P.A. Macri, J.E. Miraglia, M.S. Gravielle, J. Opt. Soc. Am. B, Opt. Phys. 20, 1801 (2003)

    Article  ADS  Google Scholar 

  20. N.I. Shvetsov-Shilovski, D. Dimitrovski, L.B. Madsen, Phys. Rev. A 85, 023428 (2012)

    Article  ADS  Google Scholar 

  21. M. Li, J.W. Geng, H. Liu, Y. Deng, C. Wu, L.Y. Peng, Q. Gong, Y. Liu, Phys. Rev. Lett. 112, 113002 (2014)

    Article  ADS  Google Scholar 

  22. N.I. Shvetsov-Shilovski, M. Lein, L.B. Madsen, E. Räsänen, C. Lemell, J. Burgdörfer, D.G. Arbó, K. Tőkési, Phys. Rev. A 94, 013415 (2016)

    Article  ADS  Google Scholar 

  23. D.B. Milošević, F. Ehlotzky, Phys. Rev. A 57, 5002 (1998)

    Article  ADS  Google Scholar 

  24. X.M. Tong, S.I. Chu, Chem. Phys. 217, 119 (1997)

    Article  Google Scholar 

  25. X.M. Tong, S.I. Chu, Phys. Rev. A 61, 031401 (2000)

    Article  ADS  Google Scholar 

  26. X.M. Tong, C.D. Lin, J. Phys. B: At. Mol. Opt. Phys. 38, 2593 (2005)

    Article  ADS  Google Scholar 

  27. O. Schöller, J.S. Briggs, R.M. Dreizler, J. Phys. B: At. Mol.Phys. 19, 2505 (1986)

    Article  ADS  Google Scholar 

  28. A. Messiah, in Quantum mechanics (North-, New York, 1965), Vols. I and II

  29. S. Dionissopoulou, T. Mercouris, A. Lyras, C.A. Nicolaides, Phys. Rev. A 55, 4397 (1997)

    Article  ADS  Google Scholar 

  30. D.G. Arbó, K. Tőkési, J.E. Miraglia, Eur. Phys. J. D 51, 303 (2009)

    Article  ADS  Google Scholar 

  31. D.G. Arbó, C. Lemell, S. Nagele, N. Camus, L. Fechner, A. Krupp, T. Pfeifer, S.D. López, R. Moshammer, J. Burgdörfer, Phys. Rev. A 92, 023402 (2015)

    Article  ADS  Google Scholar 

  32. K.I. Dimitriou, D.G. Arbó, S. Yoshida, E. Persson, J. Burgdörfer, Phys. Rev. A 70, 061401 (2004)

    Article  ADS  Google Scholar 

  33. M. Dran, D.G. Arbó, Phys. Rev. A 97, 053406 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián D. López.

Additional information

Contribution to the Topical Issue “Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)”, edited by Károly Tőkési, Béla Paripás, Gábor Pszota, and Andrey V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, S.D., Arbó, D.G. Holographic interferences in photoelectron spectra: different approaches. Eur. Phys. J. D 73, 28 (2019). https://doi.org/10.1140/epjd/e2018-90528-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90528-5

Navigation