Skip to main content
Log in

Efficient formation of stable ultracold Cs2 molecules in the ground electronic state via two-color photoassociation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The efficient formation of ultracold Cs2 molecules in a low vibrational state of the ground electronic state from ultracold cesium atoms via a two-color pump–dump photoassociation is theoretically investigated. An excited state wave packet is formed by a negative chirped pump pulse, and then is de-excited to the target vibrational state of the ground electronic state by a long dump pulse. The population transfer process from the excited electronic state to the target vibrational state is closely related to the movement of the excited state wave packet. We find that there exists a dump window during the movement of the excited state wave packet. The population in the excited electronic state can be efficiently de-excited to the target vibrational state of the ground electronic state by the dump pulse turned on in this dump window, and the efficiency of de-excitation reaches 67.11%. The population of the target vibrational state can be further transferred to the lowest vibrational state of the ground electronic state, and the transfer efficiency can reach 99.96%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  2. D.S. Jin, J. Ye, Chem. Rev. 112, 4801 (2012)

    Article  Google Scholar 

  3. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  Google Scholar 

  4. E.R. Hudson, H.J. Lewandowski, B.C. Sawyer, J. Ye, Phys. Rev. Lett. 96, 143004 (2006)

    Article  ADS  Google Scholar 

  5. T. Zelevinsky, S. Kotochigova, J. Ye, Phys. Rev. Lett. 100, 043201 (2008)

    Article  ADS  Google Scholar 

  6. J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Nature 473, 493 (2011)

    Article  ADS  Google Scholar 

  7. S. Truppe, R.J. Hendricks, S.K. Tokunaga, H.J. Lewandowski, M.G. Kozlov, C. Henkel, E.A. Hinds, M.R. Tarbutt, Nat. Commun. 4, 2600 (2003)

    Article  ADS  Google Scholar 

  8. M.T. Bell, T.P. Softley, Mol. Phys. 107, 99 (2009)

    Article  ADS  Google Scholar 

  9. N. Balakrishnan, J. Chem. Phys. 145, 150901 (2016)

    Article  ADS  Google Scholar 

  10. R. de Carvalho, J.M. Doyle, B. Friedrich, T. Guillet, J. Kim, D. Patterson, J.D. Weinstein, Eur. Phys. J. D 7, 289 (1999)

    Article  ADS  Google Scholar 

  11. N.R. Hutzler, H. Lu, J.M. Doyle, Chem. Rev. 112, 4803 (2012)

    Article  Google Scholar 

  12. H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999)

    Article  ADS  Google Scholar 

  13. S.Y.T. van de Meerakker, H.L. Bethlem, N. Vanhaecke, G. Meijer, Chem. Rev. 112, 4828 (2012)

    Article  Google Scholar 

  14. D.J. McCabe, D.G. England, H.E.L. Martay, M.E. Friedman, J. Petrovic, E. Dimova, C. Béatrice, I.A. Walmsley, Phys. Rev. A 80, 033404 (2009)

    Article  ADS  Google Scholar 

  15. J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemüller, Chem. Rev. 112, 4890 (2012)

    Article  Google Scholar 

  16. Y. Huang, T. Xie, G.R. Wang, W. Zhang, S.L. Cong, Laser Phys. 24, 046001 (2014)

    Article  ADS  Google Scholar 

  17. E.F. de Lima, Phys. Rev. A 95, 013411 (2017)

    Article  ADS  Google Scholar 

  18. Z.H. Li, T. Gong, Z.H. Ji, Y.T. Zhao, L.T. Xiao, S.T. Jia, Phys. Chem. Chem. Phys. 20, 4893 (2018)

    Article  Google Scholar 

  19. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  20. S. Taie, S. Watanabe, T. Ichinose, Y. Takahashi, Phys. Rev. Lett. 116, 043202 (2016)

    Article  ADS  Google Scholar 

  21. M. Borkowski, R.M. Rodriguez, M.B. Kosicki, R. Ciurylo, P.S. Zuchowski, Phys. Rev. A 96, 063411 (2017)

    Article  ADS  Google Scholar 

  22. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998)

    Article  ADS  Google Scholar 

  23. D. Comparat, C. Drag, B.L. Tolra, A. Fioretti, P. Pillet, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, Eur. Phys. J. D 11, 59 (2000)

    Article  ADS  Google Scholar 

  24. J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2001)

    Article  ADS  Google Scholar 

  25. E. Luc-Koenig, R. Kosloff, F. Masnou-Seeuws, M. Vatasescu, Phys. Rev. A 70, 033414 (2004)

    Article  ADS  Google Scholar 

  26. J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, Phys. Rev. Lett. 115, 173003 (2015)

    Article  ADS  Google Scholar 

  27. J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, J. Phys. Chem. A 120, 3032 (2016)

    Article  Google Scholar 

  28. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  29. K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015)

    Article  ADS  Google Scholar 

  30. D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)

    Article  ADS  Google Scholar 

  31. D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986)

    Article  ADS  Google Scholar 

  32. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  33. C.P. Koch, E. Luc-Koenig, F. Masnou-Seeuws, Phys. Rev. A 73, 033408 (2006)

    Article  ADS  Google Scholar 

  34. C.P. Koch, M. Shapiro, Chem. Rev. 112, 4928 (2012)

    Article  Google Scholar 

  35. V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, J. Chem. Phys. 110, 9865 (1999)

    Article  ADS  Google Scholar 

  36. K. Willner, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 120, 548 (2004)

    Article  ADS  Google Scholar 

  37. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1994)

    Article  ADS  Google Scholar 

  38. W. Zhang, Y. Huang, T. Xie, G.R. Wang, S.L. Cong, Phys. Rev. A 82, 063411 (2010)

    Article  ADS  Google Scholar 

  39. B.W. Shore, in The Theory of Coherent Atomic Excitation: Multilevel Atoms and Incoherence (Wiley, New York, 1990), Vol. 2, pp. 860–866

  40. J.C. Wright, T.J. Zielinski, J. Chem. Educ. 76, 1367 (1999)

    Article  Google Scholar 

  41. W.C. Stwalley, Y.-H. Uang, G. Pichler, Phys. Rev. Lett. 41, 1164 (1978)

    Article  ADS  Google Scholar 

  42. A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Eur. Phys. J. D 5, 389 (1999)

    Article  ADS  Google Scholar 

  43. J.Z. Wu, W.L. Liu, Y.Q. Li, J. Ma, L.T. Xiao, S.T. Jia, JQSRT 191, 13 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Lin Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B.K., Li, J.L., Wang, M. et al. Efficient formation of stable ultracold Cs2 molecules in the ground electronic state via two-color photoassociation. Eur. Phys. J. D 73, 20 (2019). https://doi.org/10.1140/epjd/e2018-90314-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90314-5

Keywords

Navigation