Skip to main content
Log in

Ion-collision induced molecular growth in polycyclic aromatic hydrocarbon clusters: comparison of C16H10 structural isomers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The interaction of 3 keV Ar+ ions with clusters of two structural isomers of C16H10 polycyclic aromatic hydrocarbons, namely fluoranthene and pyrene, has been studied. Following the collision with the atomic projectile, a rich molecular growth inside of the cluster is observed for both isomers. The observed growth processes include the hydrogenation of the parent molecule and the addition of CHx units. They are more important in the case of collisions with fluoranthene clusters, this can be explained by a more flexible carbon skeleton and lower reaction barriers. Moreover, the evolution of the hydrogenation with the size of the growth products gives information on the growth mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)

    Article  ADS  Google Scholar 

  2. P.W. Dunk, N.K. Kaiser, C.L. Hendrickson, J.P. Quinn, C.P. Ewels, Y. Nakanishi, Y. Sasaki, H. Shinohara, A.G. Marshall, H.W. Kroto, Nat. Commun. 3, 855 (2012)

    Article  ADS  Google Scholar 

  3. O. Berné, A.G.G.M. Tielens, Proc. Natl. Acad. Sci. U.S.A 109, 401 (2012)

    Article  ADS  Google Scholar 

  4. E.R. Micelotta, A.P. Jones, J. Cami, E. Peeters, J. Bernard-Salas, G. Fanchini, ApJ 761, 35 (2012)

    Article  ADS  Google Scholar 

  5. R. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Chem. Rev. 112, 1957 (2012)

    Article  Google Scholar 

  6. N.S. Shuman, D.E. Hunton, A.A. Viggiano, Chem. Rev. 115, 4542 (2015)

    Article  Google Scholar 

  7. M.L. Cable, S.M. Hörst, R. Hodyss, P.M. Beauchamp, M.A. Smith, P.A. Willis, Chem. Rev. 112, 1882 (2012)

    Article  Google Scholar 

  8. H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26, 565 (2000)

    Article  Google Scholar 

  9. J.H. Waite, D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, Science 316, 870 (2007)

    Article  ADS  Google Scholar 

  10. A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, E.C. Sittler, Geophys. Res. Lett. 34, L22103 (2007)

    Article  ADS  Google Scholar 

  11. M. López-Puertas, B.M. Dinelli, A. Adriani, B. Funke, M. García-Comas, M.L. Moriconi, E. D’Aversa, C. Boersma, L.J. Allamandola, ApJ 770, 132 (2013)

    Article  ADS  Google Scholar 

  12. M. Frenklach, Phys. Chem. Chem. Phys. 4, 2028 (2002)

    Article  Google Scholar 

  13. D. Ascenzi, J. Aysina, P. Tosi, A. Maranzana, G. Tonachini, J. Chem. Phys. 133, 184308 (2010)

    Article  ADS  Google Scholar 

  14. P.O. Momoh, I.K. Attah, M.S. El-Shall, R.P.F. Kanters, J.M. Pinski, S.A. Abrash, J. Phys. Chem. A 118, 8251 (2014)

    Article  Google Scholar 

  15. R. Delaunay et al., J. Phys. Chem. Lett. 6, 1536 (2015)

    Article  Google Scholar 

  16. A. Domaracka, R. Delaunay, A. Mika, M. Gatchell, H. Zettergren, H. Cederquist, P. Rousseau, B.A. Huber, Phys. Chem. Chem. Phys. 20, 15052–15060 (2018)

    Article  Google Scholar 

  17. M. Gatchell, H. Zettergren, J. Phys. B: At. Mol. Opt. Phys. 49, 162001 (2016)

    Article  ADS  Google Scholar 

  18. T. Kunert, R. Schmidt, Phys. Rev. Lett. 86, 5258 (2001)

    Article  ADS  Google Scholar 

  19. M. Larsen, P. Hvelplund, M. Larsson, H. Shen, Eur. Phys. J. D 5, 283 (1999)

    Article  ADS  Google Scholar 

  20. M.H. Stockett et al., Phys. Rev. A 89, 032701 (2014)

    Article  ADS  Google Scholar 

  21. R. Delaunay, M. Gatchell, A. Mika, A. Domaracka, L. Adoui, H. Zettergren, H. Cederquist, P. Rousseau, B.A. Huber, Carbon 129, 766 (2018)

    Article  Google Scholar 

  22. T. Bergen et al., Rev. Sci. Instrum. 70, 3244 (1999)

    Article  ADS  Google Scholar 

  23. F. Chandezon, B.A. Huber, C. Ristori, Rev. Sci. Instrum. 65, 3344 (1994)

    Article  ADS  Google Scholar 

  24. W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  25. S.M. Colby, J.P. Reilly, Anal. Chem. 68, 1419 (1996)

    Article  Google Scholar 

  26. V.M. Collado, C.R. Ponciano, F.A. Fernandez-Lima, E.F. da Silveira, Rev. Sci. Instrum. 75, 2163 (2004)

    Article  ADS  Google Scholar 

  27. U. Zimmermann, N. Malinowski, U. Näher, S. Frank, T.P. Martin, Z. Phys. D 31, 85 (1994)

    Article  ADS  Google Scholar 

  28. J.L. Goldfarb, E.M. Suuberg, J. Chem. Eng. Data 53, 670 (2008)

    Article  Google Scholar 

  29. R. Podeszwa, K. Szalewicz, Phys. Chem. Chem. Phys. 10, 2735 (2008)

    Article  Google Scholar 

  30. S.D. Chakarova-Käck, A. Vojvodic, J. Kleis, P. Hyldgaard, E. Schröder, New J. Phys. 12, 013017 (2010)

    Article  ADS  Google Scholar 

  31. S.N. Derrar, M. Belhakem, Mater. Today: Proc. 4, 11512 (2017)

    Article  Google Scholar 

  32. F. Seitz et al., J. Chem. Phys. 135, 064302 (2011)

    Article  ADS  Google Scholar 

  33. M. Rapacioli, F. Spiegelman, Eur. Phys. J. D 52, 55 (2009)

    Article  ADS  Google Scholar 

  34. F. Calvo, F. Berthias, L. Feketeová, H. Abdoul-Carime, B. Farizon, M. Farizon, Eur. Phys. J. D 71, 110 (2017)

    Article  ADS  Google Scholar 

  35. T. Schlathölter, M.W. Newman, T.R. Niedermayr, G.A. Machicoane, J.W. McDonald, T. Schenkel, R. Hoekstra, A.V. Hamza, Eur. Phys. J. D 12, 323 (2000)

    Article  ADS  Google Scholar 

  36. W. Harbich, C. Félix, C. R. Phys. 3, 289 (2002)

    Article  ADS  Google Scholar 

  37. M. Stockett et al., Int. J. Mass Spectrom. 392, 58 (2015)

    Article  Google Scholar 

  38. Y. Ling, C. Lifshitz, J. Phys. Chem. 99, 11074 (1995)

    Article  Google Scholar 

  39. B. West, S. Rodriguez Castillo, A. Sit, S. Mohamad, B. Lowe, C. Joblin, A. Bodi, P.M. Mayer, Phys. Chem. Chem. Phys. 20, 7195 (2018)

    Article  Google Scholar 

  40. J.A. Rasmussen, G. Henkelman, B. Hammer, J. Chem. Phys. 134, 164703 (2011)

    Article  ADS  Google Scholar 

  41. J.A. Rasmussen, J. Phys. Chem. A 11, 4279 (2013)

    Article  Google Scholar 

  42. S. Cazaux, L. Boschman, N. Rougeau, G. Reitsma, R. Hoekstra, D. Teillet-Billy, S. Morisset, M. Spaans, T. Schlathölter, Sci. Rep. 6, 19835 (2016)

    Article  ADS  Google Scholar 

  43. S. Kwok, Y. Zhang, Nature 479, 80 (2011)

    Article  ADS  Google Scholar 

  44. G. Rouillé et al., ApJ 752, 25 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Rousseau.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delaunay, R., Mika, A., Domaracka, A. et al. Ion-collision induced molecular growth in polycyclic aromatic hydrocarbon clusters: comparison of C16H10 structural isomers. Eur. Phys. J. D 72, 149 (2018). https://doi.org/10.1140/epjd/e2018-90147-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90147-2

Navigation