Skip to main content
Log in

Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The transport of low-energy electrons through the coating of a radiosensitizing metallic nanoparticle under fast ion irradiation is analyzed theoretically and numerically. As a case study, we consider a poly(ethylene glycol)-coated gold nanoparticle of diameter 1.6 nm excited by a carbon ion in the Bragg peak region in water as well as by more energetic carbon ions. The diffusion equation for low-energy electrons emitted from a finite-size spherical source representing the surface of the metal core is solved to obtain the electron number density as a function of radial distance and time. Information on the atomistic structure and composition of the coating is obtained from molecular dynamics simulations performed with the MBN Explorer software package. Two mechanisms of low-energy electron production by the metallic core are considered: the relaxation of plasmon excitations and collective excitations of valence d electrons in individual atoms of gold. Diffusion coefficients and characteristic lifetimes of electrons propagating in gold, water, and poly(ethylene glycol) are obtained from relativistic partial wave analysis and the dielectric formalism, respectively. On this basis, the number of electrons released through the organic coating into the surrounding aqueous medium and the number of hydroxyl radicals produced are evaluated. The largest increase of the radical yield due to low-energy electrons is observed when the nanoparticle is excited by an ion with energy significantly exceeding that in the Bragg peak region. It is also shown that the water content of the coating, especially near the surface of the metal core, is crucial for the production of hydroxyl radicals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kwatra, A. Venugopal, S. Anant, Transl. Cancer Res. 2, 330 (2013)

    Google Scholar 

  2. J.W.J. Bergs, M.G. Wacker, S. Hehlgans, A. Piiper, G. Multhoff, C. Rödel, F. Rödel, Biochim. Biophys. Acta 1856, 130 (2015)

    Google Scholar 

  3. M. Yamada, M. Foote, T.W. Prow, WIREs: Nanomed. Nanobiotechnol. 7, 428 (2015)

    Google Scholar 

  4. K. Haume, S. Rosa, S. Grellet, M.A. Śmiałek, K.T. Butterworth, A.V. Solov’yov, K.M. Prise, J. Golding, N.J. Mason, Cancer Nanotechnol. 7, 8 (2016)

    Article  Google Scholar 

  5. J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, Phys. Med. Biol. 49, N309 (2004)

    Article  Google Scholar 

  6. J.C. Polf, L.F. Bronk, W.H.P. Driessen, W. Arap, R. Pasqualini, M. Gillin, Appl. Phys. Lett. 98, 193702 (2011)

    Article  ADS  Google Scholar 

  7. S.J. McMahon et al., Sci. Rep. 1, 18 (2011)

    Article  Google Scholar 

  8. E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Nanotechnology 21, 085103 (2010)

    Article  ADS  Google Scholar 

  9. E. Porcel, S. Li, N. Usami, H. Remita, Y. Furusawa, K. Kobayashi, C. Le Sech, S. Lacombe, J. Phys: Conf. Ser. 373, 012006 (2010)

    Google Scholar 

  10. F. Xiao, Y. Zheng, P. Cloutier, Y. He, D. Hunting, L. Sanche, Nanotechnology 22, 465101 (2011)

    Article  ADS  Google Scholar 

  11. T. Schlathölter et al., Int. J. Nanomedicine 11, 1549 (2016)

    Article  Google Scholar 

  12. E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Li, S. Lacombe, Nanomedicine: Nanotechnol. Biol. Med. 10, 1601 (2014)

  13. S. Li et al., Nanotechnology 27, 455101 (2016)

    Article  ADS  Google Scholar 

  14. A.V. Solov’yov (ed.), Nanoscale Insights into Ion-Beam Cancer Therapy (Springer International Publishing, Cham, Switzerland, 2017)

  15. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)

    Article  ADS  Google Scholar 

  16. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    Article  ADS  Google Scholar 

  17. E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015)

    Article  ADS  Google Scholar 

  18. C. Sicard-Roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey, H.N. McQuaid, C. Polin, N. Wardlow, F.J. Currell, Small 10, 3338 (2014)

    Article  Google Scholar 

  19. S. Rosa, C. Connolly, G. Schettino, K.T. Butterworth, K.M. Prise, Cancer Nanotechnol. 8, 2 (2017)

    Article  Google Scholar 

  20. K. McNamara, S.A.M. Tofail, Adv. Phys. X 2, 54 (2017)

    Google Scholar 

  21. S. Klein, A. Sommer, L.V.R. Distel, J.L. Hazemann, W. Kröner, W. Neuhuber, P. Müller, O. Proux, C. Kryschi, J. Phys. Chem. B 118, 6159 (2014)

    Article  Google Scholar 

  22. I. Martínez-Rovira, Y. Prezado, Med. Phys. 42, 6703 (2015)

    Article  Google Scholar 

  23. Y. Lin, S.J. McMahon, M. Scarpelli, H. Paganetti, J. Schuemann, Phys. Med. Biol. 59, 7675 (2014)

    Article  Google Scholar 

  24. S.J. McMahon, H. Paganetti, K.M. Prise, Nanoscale 8, 581 (2016)

    Article  ADS  Google Scholar 

  25. H.N. Tran et al., Nucl. Instrum. Meth. B 373, 126 (2016)

    Article  ADS  Google Scholar 

  26. S. Heredia-Avalos, I. Abril, C.D. Denton, J.C. Moreno-Marín, R. Garcia-Molina, J. Phys: Condens. Matter 19, 466205 (2007)

    Google Scholar 

  27. M. Gilles, E. Brun, C. Sicard-Roselli, Colloid. Surf. B 123, 770 (2014)

    Article  Google Scholar 

  28. A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2016)

    Article  ADS  Google Scholar 

  29. K. Haume, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 70, 181 (2016)

    Article  ADS  Google Scholar 

  30. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 114, 063401 (2015)

    Article  ADS  Google Scholar 

  31. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys. Chem. C 119, 11000 (2015)

    Article  Google Scholar 

  32. A.V. Solov’yov, Int. J. Mod. Phys. B 19, 4143 (2005)

    Article  ADS  Google Scholar 

  33. L.G. Gerchikov, A.V. Solov’yov, J.P. Connerade, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 30, 4133 (1997)

    Article  ADS  Google Scholar 

  34. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 69, 193 (2015)

    Article  ADS  Google Scholar 

  35. I. Abril, R. Garcia-Molina, C.D. Denton, F. Pérez-Pérez, N. Arista, Phys. Rev. A 58, 357 (1998)

    Article  ADS  Google Scholar 

  36. S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)

    Article  ADS  Google Scholar 

  37. I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, D. Emfietzoglou, Adv. Quant. Chem. 65, 129 (2013)

    Article  Google Scholar 

  38. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    Article  ADS  Google Scholar 

  39. F. Salvat, Phys. Rev. A 68, 012708 (2003)

    Article  ADS  Google Scholar 

  40. F. Salvat, A. Jablonski, C. Powell, Comput. Phys. Commun. 165, 157 (2005)

    Article  ADS  Google Scholar 

  41. P. de Vera, E. Surdutovich, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 71, 281 (2017)

    Article  ADS  Google Scholar 

  42. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)

    Article  Google Scholar 

  43. I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017)

  44. I.A. Solov’yov, G.B. Sushko, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, MBN Explorer and MBN Studio Tutorials. Version 3.0 (MesoBioNano Science Publishing, 2017)

  45. D. Emfietzoglou, F.A. Cucinotta, H. Nikjoo, Radiat. Res. 164, 202 (2005)

    Article  ADS  Google Scholar 

  46. S. Incerti et al., Med. Phys. 37, 4692 (2010)

    Article  Google Scholar 

  47. F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M.C. Fuss, A.G. Sanz, G. García, Eur. Phys. J. D 67, 199 (2013)

    Article  ADS  Google Scholar 

  48. I. Kyriakou, S. Incerti, Z. Francis, Med. Phys. 42, 3870 (2015)

    Article  Google Scholar 

  49. M. Dingfelder, A. Travia, R.A. Mclawhorn, J.L. Shinpaugh, L.H. Toburen, Radiat. Phys. Chem. 77, 1213 (2008)

    Article  ADS  Google Scholar 

  50. Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)

    Article  ADS  Google Scholar 

  51. J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 1 (1954)

    Google Scholar 

  52. R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977)

    Article  ADS  Google Scholar 

  53. J.M. Fernández-Varea, R. Mayol, D. Liljequist, F. Salvat, J. Phys: Condens. Matter 5, 3593 (1993)

    ADS  Google Scholar 

  54. P. de Vera, I. Abril, R. Garcia-Molina, J. Appl. Phys. 109, 094901 (2011)

    Article  ADS  Google Scholar 

  55. R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, Surf. Interface Anal. 49, 11 (2017)

    Article  Google Scholar 

  56. R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor, M.C. Fuss (Springer Science+Business Media B.V, Dordrecht, 2012), chap. 15

  57. P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)

    Article  ADS  Google Scholar 

  58. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)

    Article  ADS  Google Scholar 

  59. H. Hayashi, N. Watanabe, Y. Udagawa, C. Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000)

    Article  ADS  Google Scholar 

  60. E.D. Palik, G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic Press, San Diego, 1999)

  61. M. Michaud, A. Wen, L. Sanche, Radiat. Res. 159, 3 (2003)

    Article  ADS  Google Scholar 

  62. S.M. Sze, J.L. Moll, T. Sugano, Solid-State Electron. 7, 509 (1964)

    Article  ADS  Google Scholar 

  63. I. Lindau, P. Pianetta, K.Y. Yu, W.E. Spicer, J. ElectronSpectrosc. Relat. Phenom. 8, 487 (1976)

    Article  Google Scholar 

  64. H. Kanter, Phys. Rev. B 1, 522 (1970)

    Article  ADS  Google Scholar 

  65. G. Gergely, M. Menyhard, S. Gurban, J. Toth, D. Varga, Surf. Interface Anal. 36, 1098 (2004)

    Article  Google Scholar 

  66. R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Nucl. Instrum. Methods Phys. Res. B 267, 2647 (2009)

    Article  ADS  Google Scholar 

  67. ICRU, Report 55–Secondary electron spectra from charged particle interactions (International Commission on Radiation Units and Measurements, Bethesda, Maryland, 1996)

  68. C.D. Denton, I. Abril, R. Garcia-Molina, J.C. Moreno-Marín, S. Heredia-Avalos, Surf. Interf. Anal. 40, 1481 (2008)

    Article  Google Scholar 

  69. D. Liljequist, Radiat. Phys. Chem. 77, 835 (2008)

    Article  ADS  Google Scholar 

  70. A. Jablonski, J. Phys. Chem. Ref. Data 33, 409 (2004)

    Article  ADS  Google Scholar 

  71. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995)

  72. J.P. Connerade, A.V. Solov’yov, Phys. Rev. A 66, 013207 (2002)

    Article  ADS  Google Scholar 

  73. A. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 253 (2012)

    Article  ADS  Google Scholar 

  74. L.G. Gerchikov, A.N. Ipatov, R.G. Polozkov, A.V. Solov’yov, Phys. Rev. A 62, 043201 (2000)

    Article  ADS  Google Scholar 

  75. C. Yannouleas, R.A. Broglia, Ann. Phys. 217, 105 (1992)

    Article  ADS  Google Scholar 

  76. B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)

    Article  ADS  Google Scholar 

  77. H. Nikjoo, S. Uehara, D. Emfietzoglou, F. Cucinotta, Radiat. Meas. 41, 1052 (2006)

    Article  Google Scholar 

  78. M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat. Environ. Biophys. 48, 11 (2009)

    Article  Google Scholar 

  79. J. Fedor et al., J. Phys. B: At. Mol. Opt. Phys. 39, 3935 (2006)

    Article  ADS  Google Scholar 

  80. L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, L. Sanche, Eur. Phys. J. D 69, 195 (2015)

    Article  ADS  Google Scholar 

  81. J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002)

    Article  ADS  Google Scholar 

  82. P. Pianetta, in X-Ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, Berkley, California, 2009), Sect. 3.2

  83. J. Abate, P.P. Valkó, Int. J. Numer. Meth. Eng. 60, 979 (2004)

    Article  Google Scholar 

  84. P. de Vera, Ph.D. thesis, University of Alicante, 2016

  85. P. de Vera, I. Abril, R. Garcia-Molina, A.V. Solov’yov, J. Phys: Conf. Ser. 438, 012015 (2013)

    Google Scholar 

  86. I. Abril, C.D. Denton, P. de Vera, I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, Nucl. Instrum. Meth. B 268, 1763 (2010)

    Article  ADS  Google Scholar 

  87. C.T. Chantler, J.D. Bourke, J. Phys: Condens. Matter 27, 455901 (2015)

    ADS  Google Scholar 

  88. J.C. Ashley, C.J. Tung, R.H. Ritchie, Surf. Sci. 81, 409 (1979)

    Article  ADS  Google Scholar 

  89. C.J. Tung, Y.F. Chen, C.M. Kwei, T.L. Chou, Phys. Rev. B 49, 16684 (1994)

    Article  ADS  Google Scholar 

  90. C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instrum. Meth. B 262, 231 (2007)

    Article  ADS  Google Scholar 

  91. R.H. Ritchie, C.J. Tung, V.E. Anderson, J.C. Ashley, Radiat. Res. 64, 181 (1975)

    Article  ADS  Google Scholar 

  92. G. Holtkamp, K. Jost, F.J. Peitzmann, J. Kessler, J. Phys. B: At. Mol. Opt. Phys. 20, 4543 (1987)

    Article  ADS  Google Scholar 

  93. R. Panajotovic, V. Pejcev, M. Konstantinovic, D. Filipovic, V. Bocvarski, B. Marinkovic, J. Phys. B: At. Mol. Opt. Phys. 26, 1005 (1993)

    Article  ADS  Google Scholar 

  94. H. Cho, Y.S. Park, H. Tanaka, S.J. Buckman, J. Phys. B: At. Mol. Opt. Phys. 37, 625 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Verkhovtsev.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haume, K., de Vera, P., Verkhovtsev, A. et al. Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles. Eur. Phys. J. D 72, 116 (2018). https://doi.org/10.1140/epjd/e2018-90050-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90050-x

Navigation