Skip to main content
Log in

Hidden crossing theory of charge exchange in H+ + He+(1s) collisions in vicinity of maximum of cross section

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Within the framework of dynamical adiabatic approach the hidden crossing theory of inelastic transitions is applied to charge exchange in H+ + He+(1s) collisions in the wide range of center of mass collision energies Ecm = (1.670) keV. The good agreement with experiment and molecular close coupling calculations is obtained. At low energies our 4-state results are closest to the experiment and correctly reproduce the shoulder in energy dependence of the cross section around Ecm = 6 keV. The 2-state results correctly predict the position of the maximum of the cross section at Ecm ≈ 40 keV, whereas 4-state results fail to correctly describe the region around the maximum. The reason for this is the fact that adiabatic approximation for a given two-state hidden crossing is applicable for values of the Schtueckelberg parameter >1. But with increase of principal quantum number N the Schtueckelberg parameter decreases as ~N−3. That is why the 4-state approach involving higher excited states fails at smaller collision energies Ecm ≈ 15 keV, while the 2-state approximation which involves low lying states can be extended to higher collision energies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.A. Solov’ev, J. Phys. B: At. Mol. Opt. Phys. 38, R153 (2005)

    Article  Google Scholar 

  2. R.K. Janev, P.S. Krstic, Phys. Rev. A 46, 5554 (1992)

    Article  ADS  Google Scholar 

  3. P.S. Krstic, D.R. Schultz, R.K. Janev, J. Phys. B: At. Mol. Opt. Phys. 29, 1941 (1996)

    Article  ADS  Google Scholar 

  4. E.A. Solov’ev, Theor. Math. Phys. (U.S.S.R.) 28, 757 (1976)

    Article  Google Scholar 

  5. T.P. Grozdanov, E.A. Solov’ev, Phys. Rev. A 88, 022707 (2013)

    Article  ADS  Google Scholar 

  6. T.P. Grozdanov, E.A. Solov’ev, Phys. Rev. A 90, 032706 (2014)

    Article  ADS  Google Scholar 

  7. T.P. Grozdanov, E.A. Solov’ev, Phys. Rev. A 92, 042701 (2015)

    Article  ADS  Google Scholar 

  8. V.V. Serov, V.L. Derbov, B.B. Joulakian, S.I. Vinitsky, Phys. Rev. A 75, 012715 (2007)

    Article  ADS  Google Scholar 

  9. E.Y. Sidky, B.D. Esry, Phys. Rev. Lett. 85, 5086 (2000)

    Article  ADS  Google Scholar 

  10. A. Hamido, J. Eiglsperger, J. Madronero, F. Mota-Furtado, P. O’Mahony, A.L. Frapiccini, B. Piraux, Phys. Rev. A 84, 013422 (2011)

    Article  ADS  Google Scholar 

  11. S. Ovchinnikov, J. Macek, D.B. Khrebtukov, Phys. Rev. A 56, 2872 (1997)

    Article  ADS  Google Scholar 

  12. E.A. Solov’ev, The foundations of quantum physics: new interpretation and systematic application (Lambert Academic Publishing, Saarbrucken, 2017)

  13. R.K. Janev, J. Pop-Jordanov, E.A. Solovev, J. Phys. B: At. Mol. Opt. Phys. 30, L353 (1997)

    Article  ADS  Google Scholar 

  14. T.G. Winter, G.J. Hatton, N.F. Lane, Phys. Rev. A 22, 930 (1980)

    Article  ADS  Google Scholar 

  15. B. Peart, R. Gray, K.T. Dolder, J. Phys. B: At. Mol. Phys. 10, 2675 (1977)

    Article  ADS  Google Scholar 

  16. B. Peart, K. Rinn, K.T. Dolder, J. Phys. B: At. Mol. Phys. 16, 1461 (1983)

    Article  ADS  Google Scholar 

  17. T.G. Winter, Phys. Rev. A 37, 4656 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasko P. Grozdanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grozdanov, T.P., Solov’ev, E.A. Hidden crossing theory of charge exchange in H+ + He+(1s) collisions in vicinity of maximum of cross section. Eur. Phys. J. D 72, 64 (2018). https://doi.org/10.1140/epjd/e2018-80758-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80758-x

Keywords

Navigation