Advertisement

Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

  • Liqiang Feng
  • Hang Liu
Regular Article

Abstract

The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

Graphical abstract

Keywords

Ultraintense and Ultra-short Laser Fields 

References

  1. 1.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    N. Kaya, G. Kaya, J. Strohaber, A.A. Kolomenskii, H.A. Schuessler, Eur. Phys. J. D 70, 224 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460, 972 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H.J. Wöner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466, 604 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    Y.C. Han, L.B. Madsen, J. Phys. B: At. Mol. Opt. Phys. 43, 225601 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    C. Jin, A.T. Le, C.D. Lin, Phys. Rev. A 79, 053413 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    X. Cao, S. Jiang, C. Yu, Y. Wang, L. Bai, R. Lu, Opt. Express 22, 26153 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Mairesse, A.D. Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Science 302, 1540 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    L.Q. Feng, T.S. Chu, Chem. Phys. 405, 26 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    Z.N. Zeng, Y. Cheng, X.H. Song, R.X. Li, Z.Z. Xu, Phys. Rev. Lett. 98, 203901 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    R.F. Lu, H.X. He, Y.H. Guo, K.L. Han, J. Phys. B: At. Mol. Opt. Phys. 42, 225601 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    L.Q. Feng, T.S. Chu, J. Chem. Phys. 136, 054102 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S.D. Silvestri, M. Nisoli, Science 314, 443 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    J. Li, X.M. Ren, Y.C. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z.H. Chang, Appl. Phys. Lett. 108, 231102 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    G. Chen, F.D. Zhang, Eur. Phys. J. D 71, 137 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    H. Mashiko, S. Gibertson, C.Q. Li, S.D. Khan, M.M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    K. Zhao, Q. Zhang, M. Chini, Y. Wu, X.W. Wang, Z.H. Chang, Opt. Lett. 37, 3891 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    H.C. Du, B.T. Hu, Opt. Express 18, 25958 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    Q.B. Zhang, P.X. Lu, W.Y. Hong, Q. Liao, S.Y. Wang, Phys. Rev. A 80, 033405 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nature (London) 485, E1 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nat. Phys. 9, 304 (2013) CrossRefGoogle Scholar
  30. 30.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.W. Kim, Nature (London) 485, E2 (2012) CrossRefGoogle Scholar
  31. 31.
    I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kim, M.F. Kling, M.I. Stockman, S.-W. Kim, Nat. Photon. 5, 677 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    T. Shaaran, M.F. Ciappina, M. Lewenstein, Phys. Rev. A 87, 053415 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    M.F. Ciappina, T. Shaaran, M. Lewenstein, Ann. Phys. 525, 97 (2013) CrossRefGoogle Scholar
  35. 35.
    M.F. Ciappina et al., Rep. Prog. Phys. 80, 054401 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    I. Yavuz, Y. Tikman, Z. Altun, Phys. Rev. A 92, 023413 (2015) ADSCrossRefGoogle Scholar
  37. 37.
    I. Yavuz, M.F. Ciappina, A. Chacón, Z. Altun, M.F. Kling, M. Lewenstein, Phys. Rev. A 93, 033404 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, L. Roso, A. Zaïr, Phys. Rev. Lett. 110, 053001 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    B. Fetić, D.B. Milošević, J. Mod. Opt. 60, 1466 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    L.Q. Feng, T.S. Chu, Phys. Plasmas 24, 103121 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    L.Q. Feng, H. Liu, Phys. Plasmas 22, 013107 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    S. Xue, H.C. Du, Y. Xia, B.T. Hu, Chin. Phys. B 24, 054210 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    L.Q. Feng, H. Liu, Int. J. Mod. Phys. B 31, 1650239 (2017) ADSCrossRefGoogle Scholar
  44. 44.
    H. Liu, L.Q. Feng, W.L. Li, Y. Li, Opt. Commun. 398, 31 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    L.Q. Feng, Phys. Rev. A 92, 053832 (2015) ADSCrossRefGoogle Scholar
  46. 46.
    H. Liu, Y. Li, L.Q. Feng, Laser Phys. 27, 055301 (2017) ADSCrossRefGoogle Scholar
  47. 47.
    L.Q. Feng, W.L. Li, Laser Phys. 27, 016002 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005) ADSCrossRefGoogle Scholar
  50. 50.
    L.Q. Feng, W.L. Li, H. Liu, Ann. Phys. (Berlin) 529, 1700093 (2017) ADSCrossRefGoogle Scholar
  51. 51.
    H.D. Zhang, J. Guo, H.Y. Zhong, X.Y. Luo, H. Du, Y. Shi, X.R. Huang, X.S. Liu, J. At. Mol. Sci. 7, 135 (2016) Google Scholar
  52. 52.
    S.C. Jiang, H. Wei, J.G. Chen, C. Yu, R.F. Lu, C.D. Lin, Phys. Rev. A 96, 053850 (2017) ADSCrossRefGoogle Scholar
  53. 53.
    P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995) ADSCrossRefGoogle Scholar
  54. 54.
    T. Shaaran, M.F. Ciappina, M. Lewenstein, Phys. Rev. A 86, 023408 (2012) ADSCrossRefGoogle Scholar
  55. 55.
    I. Sola, E. Mével, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J.P. Caumes, S. Stagira, C. Vozzi, G. Sansone, M. Nisoli, Nat. Phys. 2, 319 (2006) CrossRefGoogle Scholar
  56. 56.
    L.Q. Feng, T.S. Chu, Phys. Lett. A 375, 3641 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    X.H. Song, W.F. Yang, Z.N. Zeng, R.X. Li, Z.Z. Xu, Phys. Rev. A 82, 053821 (2010) ADSCrossRefGoogle Scholar
  58. 58.
    L.Q. Feng, H. Liu, Can. J. Phys. 94, 651 (2016) ADSCrossRefGoogle Scholar
  59. 59.
    G. Orlando, P.P. Corso, E. Fiordilino, F. Persico, J. Mod. Opt. 56, 1761 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    F. Wanget al., Phys. Rev. A 92, 063839 (2015) ADSCrossRefGoogle Scholar
  61. 61.
    T. Shaaran, R. Nicolas, B. Iwan, M. Kovacev, H. Merdji, Sci. Rep. 7, 6356 (2017) ADSCrossRefGoogle Scholar
  62. 62.
    I. Yavuz, Phys. Rev. A 87, 053815 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Modern Physics, Liaoning University of TechnologyJinzhouP.R. China
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalianP.R. China
  3. 3.School of Chemical and Environmental Engineering, Liaoning University of TechnologyJinzhouP.R. China

Personalised recommendations